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Abstract

were used in the five conventional frequency bands.

Background: EEG studies have shown that patients with Alzheimer’s disease (AD) have weaker functional
connectivity than controls, especially in higher frequency bands. Furthermore, active regions seem more prone to
AD pathology. How functional connectivity is affected in AD subgroups of disease severity and how network hubs
(highly connected brain areas) change is not known. We compared AD patients with different disease severity and
controls in terms of functional connections, hub strength and hub location.

Methods: We studied routine 21-channel resting-state electroencephalography (EEG) of 318 AD patients (divided into
tertiles based on disease severity: mild, moderate and severe AD) and 133 age-matched controls. Functional
connectivity between EEG channels was estimated with the Phase Lag Index (PLI). From the PLI-based connectivity
matrix, the minimum spanning tree (MST) was derived. For each node (EEG channel) in the MST, the betweenness
centrality (BC) was computed, a measure to quantify the relative importance of a node within the network. Then we
derived color-coded head plots based on BC values and calculated the center of mass (the exact middle had x and y
values of 0). A shifting of the hub locations was defined as a shift of the center of mass on the y-axis across groups.
Multivariate general linear models with PLI or BC values as dependent variables and the groups as continuous variables

Results: We found that functional connectivity decreases with increasing disease severity in the alpha band. All, except
for posterior, regions showed increasing BC values with increasing disease severity. The center of mass shifted from
posterior to more anterior regions with increasing disease severity in the higher frequency bands, indicating a loss of
relative functional importance of the posterior brain regions.

Conclusions: In conclusion, we observed decreasing functional connectivity in the posterior regions, together with a
shifted hub location from posterior to central regions with increasing AD severity. Relative hub strength decreases in

posterior regions while other regions show a relative rise with increasing AD severity, which is in accordance with the
activity-dependent degeneration theory. Our results indicate that hubs are disproportionally affected in AD.

Background

Alzheimer’s disease (AD) is a progressive neurodegener-
ative disease and a growing public health concern. At
the cognitive level, AD is mainly characterized by mem-
ory impairment but it also affects other cognitive do-
mains [1]. Meanwhile, AD patients show microscopic
alterations in their brain, such as amyloid depositions
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and cell loss, which eventually may lead to macroscopic
EEG changes. Cognition results from an optimal combin-
ation of local information processing and interregional in-
tegration of this information [2]. This communication can
be macroscopically approximated by the measurement of
functional connectivity using time series that reflect brain
activity. A functional brain network can be constructed by
taking all functional connections (i.e., edges of the net-
work) between all regions (i.e., nodes of the network). In
these networks, nodes that have a central position within
the network and therefore are important to the network
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structure and integrity, are called hubs. Previous research
has shown that the parietal brain region, including the
precuneus and posterior cingulate gyrus, is an important
hub region in the healthy brain [3]. In AD, this parietal
hub region seems to be particularly affected [4]. Electroen-
cephalography (EEG) measures electrical brain activity
and is used to study functional connectivity and networks
in AD. In a group of early-onset AD patients, we observed
reduced hub status in the posterior- and occipital brain re-
gions with EEG [5].

Studies of functional connections have revealed AD-
related changes, in which functional connectivity is
generally lower in AD [6, 7], specifically in the higher
frequency bands [8, 9]. On the other hand, network
characteristics seem to be altered in AD (e.g., [9-11]). It
is however not known how the severity of the disease in-
fluences both functional connections and brain networks
in AD.

In this EEG study, we studied the hub strength and lo-
cation and evaluated functional connectivity as a func-
tion of disease severity. Furthermore, we subdivided the
EEG electrodes into frontal, central and posterior regions.
Our hypotheses are three-fold. Firstly, we hypothesize that
functional connectivity is reduced in mild stages of the
disease and decreases further with increasing disease se-
verity. Secondly, we expect hub strength to decrease in
the same areas as the functional connectivity disruptions.
Lastly, we expect hub strength to decrease (most likely in
regions with decreasing functional connectivity) and
therefore, we expect that other regions will become rela-
tively more hub-like (a shifted hub location).

Methods

Subjects

We included 318 patients with probable AD and 133 non-
demented controls with available EEG [12, 13]. The AD
group was classified into tertiles based on Mini Mental
State Examination (MMSE) (mild, moderate and severe,
Table 1). The participants are a subset of the Amsterdam
Dementia Cohort [14]. Standardized dementia screening
included patient history (including an informant based
history of the patient, if available), neurological and cogni-
tive examination, EEG, magnetic resonance imaging
(MRI) of the brain, and laboratory tests. Patients were di-
agnosed with probable AD according to the National
Institute of Neurological and Communicative Disorders
and Stroke and the Alzheimer’s Disease and Related
Disorders Association (NINCDS-ADRDA) criteria dur-
ing a multidisciplinary consensus meeting [1, 15]. The
non-demented control group consisted of age-matched
patients with subjective cognitive complains but without
abnormalities on formal testing (i.e., criteria for mild cog-
nitive impairment or any psychiatric disorder were not
fulfilled). All participants gave written informed consent
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Table 1 Subject characteristics

Controls  AD patients

Severe Moderate  Mild
N 133 17 9 105
Age, Years® 67.8(6.3)  68.1(8.5) 70.7(88)  69.9(9.6)
Sex, Female 59(63 %) 62(53 %) 52(54 %)  40(38 %)
MMSE-score® 28.5(13)°  154(3.5) 21.5(1.1)  25.8(1.6)
Disease duration, years® n.a. 4.1(2.5) 3.52.1) 3.2(1.9
Using AChEI” 1008 %)  8(6.8 %) 552 %) 548 %)
Education® 54(12) 42015 48(13) 53012

The data is represented as mean (SD) or number (percentage)

AChEI Acetyl-cholinesterase inhibitor, MMSE mini mental-state examination
“These variables where tested using ANOVA. We corrected the results for
multiple comparison using a post-hoc Bonferroni test

Pgender differences of p < 0.01 were found between mild AD and
severe/moderate AD

“MMSE differences of p < 0.01 were found between all group combinations
9evel of education was rated according to Verhage [51]

for the use of their clinical data for research purposes [14].
The ethical review board of the VU University Medical
Center approved this procedure.

EEG recording

Details about EEG recordings and technical aspects have
been previously described [5, 12, 13]. In short, we re-
corded EEG with 21 electrodes at the positions of the
10-20 system with a sample frequency of 500 Hz and
the electrode impedance of below 5kQ (BrainLab, OSG
b.v., Rumst, Belgium). Initial filter settings were: time
constant 1 s; low pass filter at 70 Hz. Patients sat with
eyes closed in a slightly reclined chair in a sound attenu-
ated room. EEG technicians were alert on keeping the
participants awake. Four epochs of 4096 samples were
found to represent a stable EEG measure in a subset of
our dataset (see Additional file 1). Therefore, we selected
four artifact free epochs (containing as little as possible
eye blinks, slow eye-movements, excess muscle activity,
ECQG artifacts, etc.) of 4096 samples and a common aver-
age reference were selected from each EEG (by HdW).
EEG channels were clustered into three different regions
to perform regional analysis: anterior (Fpl, Fp2, F7, F3,
Fz, F4, F8), central (T3, C3, Cz, C4, T4), and posterior
(T5, P3, Pz, P4, T6, O1, O2).

Functional connectivity

Functional connectivity was assessed using the Phase
Lag Index (PLI), which is a measure of statistical inter-
dependencies between time series based upon the
asymmetry in the distribution of instantaneous phase
differences [16]. The PLI ranges between zero and one
in which zero indicates no coupling strength and one
refers to maximal coupling strength. The PLI is less
sensitive to volume conduction than most other fre-
quently used measures for functional connectivity [17].
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BrainWave software version 0.9.125 (available at http://
home kpn.nl/stam7883/brainwave.html) was used to cal-
culate PLI in five frequency bands (delta band 0.5-4 Hz,
theta band 4-8 Hz, lower alpha band 8-10 Hz, upper
alpha band 10-13 Hz, beta band 13-30 Hz). We did not
take into account the gamma band (>30 Hz) because this
fast activity cannot reliably be distinguished from muscle
artefacts [18]. In every subject, the mean PLI was calcu-
lated by taking the mean of four epochs. In addition to the
mean whole-brain PLI, we computed regional PLI by aver-
aging the PLI values of the electrodes in the anterior, cen-
tral and posterior clusters.

Hub status

From the adjacency matrix containing the PLI values, we
constructed the minimum spanning tree (MST), which
is a unique subgraph that connects all nodes (EEG elec-
trodes in our study) of a network by the strongest con-
nections (defined as the links with the highest PLI
values) without forming cycles (i.e., loopless) [2] using
Kruskal’s algorithm [19]. From the MST and for each
node, its importance in the functional network was
established with the betweenness centrality (BC). This is
a measure of the hub-status and is defined as the num-
ber of paths between node-pairs that run through a spe-
cific node, divided by the total number of paths from
any node to all other nodes in the MST. A network node
with a relatively high BC-value compared to other net-
work nodes is suggestive for a hub-region in that
network.

Hub visualization plots

Color-coded BC values of the MST per electrode
were plotted on a 2-D head model using biharmonical
spline interpolation in MatLab® 2012b (The mathworks,
Massachussets, USA) [20]. In addition, using the MatLab
dot product function, we calculated a vector based upon
BC values of the MST over both the x- and y-axis (taken
the 10-20 system channel locations into account). The ac-
quired x- and y-vectors were then plotted onto the head
model to visualize the “center of mass” of the BC. This
vector is based upon the BC values of all nodes and is lo-
cated on the spot where the surrounding BC values are
balanced (for example: if the BC values of all network
nodes are equal, the center of mass vector will be located
exactly in the middle of the brain while if one node in the
network has a higher BC value, the center of mass vector
will shift towards that specific node). Hereby, the hub sta-
tus of the three patient groups (mild, moderate and severe
AD) and the control group can be displayed both visually
(i.e., both the color-coding of the BC values and the
displayed center of mass vector on a head model)
and quantitatively (i.e., y-value of the mass center).
The y- values, representing the front-to-back direction,
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were used for statistical analyses. Note that an x- and
y value of O represent the exact middle of the graph
(c.q. EEG electrode Cz).

Statistical analysis

IBM SPSS Statistics version 20 for Mac was used for
statistical analyses. Differences between baseline group
characteristics were tested with y’-tests and one-way
ANOVA with post-hoc Bonferroni tests. Natural log
transformation [y =In(x)] was applied on PLI and BC
values to obtain normal distributions of these measures
with an addition of 1¢107>* to avoid zeros in the data.
To test PLI and BC group differences, we used multivari-
ate general linear models in four regions (anterior, central,
posterior and global) and five frequency bands (delta,
theta, lower alpha, upper alpha and beta). We tested the
influence of the severity of the disease (entered as con-
tinuous independent variable: controls — mild — moder-
ate- severe AD) in the multivariate general linear model
with gender as covariate in order to obtain the p for trend
(note that this p for trend represents a significant gradual
change over the groups). The multivariate general linear
models were conducted in 3 sessions: (1) log-transformed
PLI values as dependent variables with the group as con-
tinuous independent variable; (2) log-transformed BC
values as dependent variables with the group as continu-
ous independent variable; (3) x- and y values of the center
of mass (as described in the previous paragraph) as
dependent variables with the groups as continuous inde-
pendent variables. We used a Bonferroni correction in
order to correct for the number of groups. Statistical
significance was set at p < 0.05 for PLI and BC values and
p <0.01 for subject characteristics. A two-tailed Spearman
correlation analysis was performed across and within the
AD groups with MMSE-scores. Statistical significance was
corrected for the number of tests by dividing the preferred
p-value (P < 0.05) by the number of tests.

Results

Subject characteristics

Subject characteristics of the four groups (controls,
mild AD, moderate AD and severe AD) are presented
in Table 1. Mean age did not differ between groups.
The mild AD group contained more females than the
severe AD and moderate AD groups. There was no
difference in education and the use of cholinesterase
inhibitors between groups. The estimated disease dur-
ation was not different within the three AD groups.
We did not find differences between the amplitudes of
the EEG signals in any of the regions between groups.

Functional connectivity
We found an association between increasing disease se-
verity and decreasing PLI in the lower alpha band in the
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posterior region (PLI-values: controls 0.274 + 0.107, mild
AD 0.249 +0.091, moderate AD 0.236 + 0.083, severe
AD 0.238 + 0.095; p for trend = 0.03). This indicates that
functional connectivity reduction is associated with in-
creasing disease severity. Other regions and bands did
not show any associations with disease severity.

Hub location and strength

The BC values of the nodes in the MST, as an indication
of the node importance, are shown in Table 2 (raw
values, p for trend). We found increasing BC values in
the lower alpha band global and in the anterior region;
in the upper alpha band global, in anterior and central
regions; and in the beta band in the anterior region. We
observed decreasing BC values in the beta band in the
posterior region. Figure 1 presents head plots of BC
values with the center of mass marked in all frequency
bands and groups to visualize the changing location of
the center of mass of the BC values. In the delta and
theta bands, the center of mass of the controls is located
in the anterior and central regions respectively while in
the alpha bands and beta bands it is located in the pos-
terior regions. The y-values of the center of mass of the
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AD patients are located centrally in all frequency bands.
The back-to-front shifting of the center of mass from
the posterior to the central regions, as indicated by the
y-values, increased with increasing disease severity in
the alpha and beta bands (p for trend = 0.011 in alphal;
p for trend = 0.025 in alpha2; and p for trend < 0.000 in
beta). Generally, in the higher frequency bands the most
important nodes (as indicated by a high BC value) were
located in the posterior brain regions in controls and,
with increasing disease severity, were becoming rela-
tively less important. The left-to-right shifting of the
center of mass was significant only in the beta band (p
for trend = 0.012) indicating a shift to the right side of
the brain in the most severely affected AD patients.

Correlation with MMSE scores

Since we measure 5 frequency bands, 4 regions and
3 AD groups, we set the p-value threshold for signifi-
cance to 0.00042. We found no significant correlations
with MMSE. Next, we merged the 3 AD groups into 1
group containing all AD patients. For this analysis, we
set the p-value threshold for significance to 0.00125.
We found a positive significant correlation with

Table 2 Minimum spanning tree-based betweenness centrality differences between groups

Frequency band Region Control Severe AD Moderate AD Mild AD P for trend
Mean BC (SD) Mean BC (SD) Mean BC (SD) Mean BC (SD)

Delta global .154 (0.014) 4 (0.013) 0.155 (0.012) 0.154 (0.014) N.S.
anterior 0.206 (0.043) 8 (0.050) 0.199 (0.045) 0.209 (0.047) N.S.
central .120 (0.045) 2 (0.054) 0.129 (0.047) 0.121 (0.046) N.S.
posterior .126 (0.039) 4 (0.043) 0.130 (0.039) 0.123 (0.043) N.S.

Theta global .158 (0.028) 7 (0.013) 0.157 (0.016) 0.157 (0.014) N.S.
anterior .153 (0.057) 7 (0.053) 0.154 (0.049) 0.155 (0.054) N.S.
central .142 (0.049) 9 (0.046) 0.142 (0.047) 0.142 (0.043) N.S.
posterior 174 (0.044) 0.162 (0.049) 0.171 (0.040) 0.170 (0.044) N.S.

Lower alpha global .154 (0.015) 9 (0.014) 0.156 (0.012) 0.158 (0.013) 0.02
anterior .120 (0.039) 4 (0.045) 0.134 (0.044) 0.136 (0.045) 0.04
central 1133 (0.048) 5 (0.049) 0.142 (0.047) 0.142 (0.044) N.S.
posterior 0.202 (0.039) 4 (0.046) 0.189 (0.043) 0.193 (0.038) N.S.

Upper alpha global 156 (0.013) 0.161 (0.012) 0.160 (0.014) 0.161 (0.014) 0.01
anterior 8(0.052) 0.140 (0.046) 0.133 (0.044) 0.129 (0.041) 0.01
central 0 (0.056) 157 (0.054) 0.160 (0.049) 0.163 (0.053) 0.02
posterior 0.200 (0.045) 0.186 (0.042) 0.188 (0.042) 0.192 (0.040) N.S.

Beta global 2 (0.015) 2(0.017) 0.146 (0.018) 0.145 (0.016) N.S.
anterior 0.082 (0.053) 7 (0.055) 0.120 (0.060) 0.117 (0.058) 0.00
central 5 (0.059) 0 (0.066) 0.178 (0.069) 0.185 (0.061) N.S.
posterior 0.172 (0.054) 8 (0.058) 0.148 (0.054) 0.143 (0.057) 0.03

The data are presented as raw minimum spanning tree-based betweenness centrality (BC). Note that raw data are presented, while analyses were performed on
log-transformed data. Significance was obtained by a multivariate general linear model and Bonferroni post-hoc analysis. Significant differences between the
patient groups and the control group are printed in bold. AD Alzheimer’s disease, BC betweenness centrality, SD standard deviation
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MMSE in the BC-values in frontal region in the delta
band (Spearman’s r=0.199; p<0.001) and a negative
correlation with MMSE in the BC-values in the pos-
terior region in the delta band (Spearman’s = -0.210;
p <0.001), as represented in Fig. 2.

Discussion

In this study on topological patterns of physiological
brain activity, we found that a decrease in the functional
connectivity in the posterior brain regions was associ-
ated with increasing disease severity in the lower alpha
band. In addition, the locations of the hubs in the func-
tional networks of AD patients were located towards an-
terior brain regions compared to the hubs of the control
networks, with a significant shift to a more anterior lo-
cation in the more severely affected patients. The rela-
tive node importance of the frontally and centrally

located brain areas, as quantified with the BC of the
MST, increased with disease severity in AD.

Lower functional connectivity in AD has previously
been reported in studies using different modalities, but
the pattern of this functional connectivity and the meth-
odology varied considerably between studies. In studies
with high temporal resolution time series (EEG and
magnetoencephalography (MEG)), functional connectiv-
ity in AD was found to be decreased in the higher fre-
quency bands (alpha and beta) [9, 21-26] as well as the
lower frequency bands (theta) [22, 23] and involving
mainly brain regions that are connected by long (corti-
cocortical) fibers [24, 27]. In addition, the location of the
largest decrease in patients compared to controls varied
over the studies: main differences between groups were
found in the anterior and central regions [18, 28, 29] as
well as the posterior regions [21] and in one study, both
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regional increases and decreases were found [30]. Func-
tional connectivity increases of slower oscillations (theta
band) were also reported [8, 31]. In studies with lower
temporal but high spatial resolution (functional mag-
netic resonance imaging (fMRI) and positron emission
tomography (PET)), a similar pattern has been found
with regionally dependent increases as well as decreases
in functional connectivity but with a tendency for a gen-
eral decrease in AD (for a review see: [32]). These results
indicate that the interpretation of functional connectivity
changes in AD is, at least to some extent, dependent on
the method used for the analysis. In addition, it can be
conceived that during the course of the disease the func-
tional connectivity is fluctuating, with a possible initial
increase [33] and a later decrease. Therefore, differences
in inclusion criteria of AD patients across studies could
partly account for the differences in the results [4]. We
included patient groups of different disease severity and
studied the gradual effect of the AD severity on func-
tional connectivity. Our results indicate that AD severity
correlates with a functional connectivity decrease in the
posterior brain areas in the lower alpha band. These re-
sults give rise to the hypothesis that loss of functional
networks might be more valuable than increasing amyl-
oid burden, which is supposed to have plateau’d at the
stage of dementia [34].

The posterior brain areas are main hub regions, and
are known to be involved in AD [35]. In healthy sub-
jects, the posterior brain areas, including the precu-
neus and the posterior cingulate gyrus, contain hubs
with many functional connections to other brain areas
[36-38] and are important for intellectual perform-
ance [39]. Also, hubs seem electrically more active, as
shown in an EEG simulation study [4, 40]. Meanwhile,
these hubs are more likely to be abnormal in a brain

disorder like AD [41]. Previously, the amyloid deposi-
tions were found to have a predilection for high activ-
ity brain areas [42]. In addition, glucose metabolism in
AD showed reduced activity in the cortex of the pos-
terior cingulate gyrus [43, 44] and precuneus [45, 46].
We reported a shifted hub region, from posterior in
controls, to more central regions in AD patients.
However, since EEG has a low spatial resolution, any
assumptions about regional effects should be made
with caution. The functional meaning of the relocation
of hubs to more anterior regions (i.e., EEG sensors)
might have it’s origin in the heterochronicity of the
pathophysiological processes in AD. This means that
the pathological pattern is different in patients early in
the disease as compared to later stages of the disease.
This causes that the gradually degrading posterior re-
gion with rising disease pathology in this region to
eventually be incapable of effectively conducting elec-
trical activity.

Patients were diagnosed with AD based on clinical
criteria using a standardized diagnostic protocol and
international criteria [1, 15]. The control subjects pre-
sented at the clinic with subjective memory com-
plaints and can therefore not strictly be considered
healthy. However, this group is clinically relevant since
they represent daily practice in the memory clinic.
The choice for the functional connectivity measure in-
fluences the results. In this study, we used the PLIL
This measure might be biased towards long distance
connectivity, because all zero-lag (mostly short dis-
tance) connections are discarded. However, the main
advantage of this approach is the reduction of bias due
to volume conduction and activity from common
sources [16]. Thus, the PLI may be an underestimation
of functional connectivity and therefore, in our study of a
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large cohort, would show an underestimation of the real
disease-effect.

The number of epochs used for analyses may influence
the PLI results. In our analyses, we used 4 epochs of
8.192 s (4096 samples). We found that 4 epochs give as re-
liable PLI values as 5,6,7 or 8 epochs (see Additional file 1).

When comparing networks, several choices have to be
made to handle networks of different sizes (number of
nodes) and connection strengths. These choices influ-
ence the results of the network analysis and are arbitrary
[47]. The MST has the advantage of giving a unique rep-
resentation of a connectivity matrix since no arbitrary
choices have to be made. It is the minimal connected
sub-network consisting of the strongest connections
without forming cycles. Therefore, the MST can be con-
sidered as a backbone of the network that likely includes
most of the important connections in the network
[28, 48].

Different centrality indices result in different values for
the same graph. We choose the betweenness centrality
as a measure for centrality in brain networks. It has pre-
viously been proposed to be robust to measure centrality
of nodes in networks [49]. Another often-applied cen-
trality measure is the node degree that indicates the
number of connection of a node in the network. Al-
though the number of shortest paths through a node
and the number of connections of that node are likely to
be related, node degree is not sensitive to so-called con-
nector hubs [50]. Connector hubs are thought to con-
nect high degree hubs to each other and therefore have
a relatively low degree but at the same time include
many shortest paths (e.g., a high betweenness centrality).

Conclusions

In conclusion, we observed that functional connectivity in
AD decreases in the posterior brain regions in the lower
alpha band in a disease severity dependent fashion. Second,
we described a more widespread disease severity related
relative increase in anterior hub strength compared to the
posterior brain areas. Third, we found that the hub loca-
tion shifts gradually from posterior regions in controls, to-
wards more central regions in AD. All findings were
specific for the higher frequency ranges (lower alpha, upper
alpha and beta bands). Changes in hub status were more
outspoken than the functional connectivity changes, which
suggest that hubs are disproportionally affected in AD.

Additional file

Additional file 1: The influence of the number of epochs. The
number of epochs used for analyses influences the PLI outcomes. This
supplement, including 1 figureand 1 table show that the PLI values
become stable after 4 epochs of 8.192 seconds (4096 samples). (ZIP
66 kb)
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