
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Wang et al. BMC Neurology           (2024) 24:33 
https://doi.org/10.1186/s12883-024-03529-y

BMC Neurology

†Wenwen Wang, Wei Ge and Junling Feng contributed equally to 
this work.

Ling Wang is the main corresponding author and Chen Li is co-
corresponding author.

*Correspondence:
Chen Li
lc.biosta@qq.com

Ling Wang
lynnw@fmmu.edu.cn
1Department of Health Statistics, School of Preventive Medicine, Fourth 
Military Medical University, No.169 Changlexilu Road, Xi’an,  
Shaanxi Province 710042, P. R. China
2Department of Field and Disaster Nursing, Fourth Military Medical 
University, Xi’an, Shaanxi 710032, China
3Department of Neurological Intensive Care Rehabilitation, Xi’an 
International Medical Center Hospital, Xi’an, Shaanxi Province  
710000, China

Abstract
Background Myasthenia gravis (MG) is an autoimmune disease that affects neuromuscular junction. The literature 
suggests the involvement of circulating cytokines (CK), gut microbiota (GM), and serum metabolites (SM) with MG. 
However, this research is limited to observational trials, and comprehensive causal relationship studies have not been 
conducted. Based on published datasets, this investigation employed Mendelian Randomization (MR) to analyze the 
known and suspected risk factors and biomarkers causal association of MG and its subtypes.

Methods This research used two-sample MR and linkage disequilibrium score (LDSC) regression of multiple datasets 
to aggregate datasets acquired from the genome-wide association studies (GWAS) to assess the association of MG 
with 41-CK, 221-GM, and 486-SM. For sensitivity analysis and to validate the robustness of the acquired data, six 
methods were utilized, including MR-Egger regression, inverse variance weighting (IVW), weighted median, and 
MR-PRESSO.

Results The MR method identified 20 factors significantly associated with MG, including 2 CKs, 6 GMs, and 9 SMs. 
Further analysis of the factors related to the two MG subtypes, early-onset MG (EOMG) and late-onset MG (LOMG), 
showed that EOMG had a high overlap with MG in the intestinal flora, while LOMG had a greater similarity in CKs 
and SMs. Furthermore, LDSC regression analysis indicated that Peptococcaceae, oxidized biliverdin, and Kynurenine 
had significant genetic correlations with general MG, whereas EOMG was highly correlated with Intestinibacter, while 
LOMG had significant genetic associations with Kynurenine and Glucose.

Conclusion This research furnishes evidence for the potential causal associations of various risk factors with MG and 
indicates a heterogeneous relationship between CKs, GMs, and SMs with MG subtypes.
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Introduction
Myasthenia Gravis (MG), a chronic autoimmune dis-
ease, is manifested with serum auto-antibodies against 
the nicotinic acetylcholine receptor (AChR) at the neu-
romuscular junction (NMJ) in most patients. The main 
clinical symptoms of MG are the changes in the NMJ and 
damage caused by antibodies, leading to partial or sys-
temic abnormal muscle fatigue and weakness [1, 2]. Its 
incidence per annum is about 4–12 per million, whereas 
the global prevalence is 40‒180 per million people [3, 4]. 
Depending on whether the patient is over 50 years old 
at the time of onset, MG can be divided into late-onset 
MG (LOMG) and early-onset MG (EOMG) subtypes [5]. 
With the rising prevalence and morbidity in the elderly 
population, especially LOMG, the mortality rate of MG 
has markedly increased [6]. Adjuvant antibody test-
ing is time-consuming, relatively expensive, not readily 
available, and has a high false-negative result rate [1]. 
Furthermore, although immunosuppressive and conven-
tional hormonal therapies can relieve symptoms, the MG 
recurrence rate is still quite high, and no consensus has 
been reached on the ideal therapeutic algorithm for MG 
[7]. Therefore, early identification and development of 
more specific therapies are critical for MG patient’s bet-
ter quality of life.

A thorough understanding of the pathogenesis of MG 
is helpful for the diagnosis and treatment. Some studies 
have found genes related to genetic susceptibility to MG, 
such as HLA-DQ5, CTLA-4, etc., but the etiology of MG 
immune-related needs further study. The epidemiological 
literature has indicated the associations of MG with cyto-
kines (CK) [8, 9], gut microbiotas (MG) [10, 11], serum 
metabolites (SM) [12, 13], circulating inflammatory pro-
teins (CIF), and immune cell signatures (ICS). The causal 
associations of many of these remain undetermined, as 
most evidence was acquired from observational studies, 
which are often limited by recall, selection, confounding, 
reverse causation biases, and measurement errors.

In epidemiologic research, Mendelian randomiza-
tion (MR) assessment has widely been used for assessing 
causal inference [14]. The MR analysis employs genetic 
variants as instrumental variables (IVs) to calculate expo-
sures of interest for association analysis of disease out-
comes. Since during gametogenesis, genetic alleles are 
classified randomly, MR resembles randomized clini-
cal trials, minimizing or eliminating the potential for 
confusion and reverse causality bias common in tradi-
tional epidemiological research [15]. The associations of 
genetic variants with MG have been assessed in various 
genome-wide association studies (GWAS). The molecu-
lar analyses of peripheral T-cell traits have determined 
three T-cell traits as causally protective factors against 
MG [16]. Currently, studies for the evaluation of a large 
number of known and suspected MG risk factors are 

lacking. MR analysis could serve as an efficient tool for 
exploring causal relationships between new biomarkers 
and MG risk using the existing large data sets, which is 
rarely done in the field. Using the same methodology to 
assess these risk factors in one study will help compare 
the association strength and furnish a comprehensive 
understanding of MG etiology. Understanding the rela-
tionship between MG’s intrinsic subtypes and these risk 
factors may provide additional insights into its etiology 
and biology.

Therefore, this large MR research comprehensively elu-
cidated the associations of 41-CK, 221-GM, and 486-SM 
with MG risk and assessed their associations with the 
EOMG and LOMG subtypes.

Materials and methods
Study design
Figure 1 indicates the assumptions of this MR study. This 
research followed three basic assumptions: (1) genetic 
variants were related to exposure, (2) confounders and 
genetic variants are not associated, and (3) outcomes 
were only linked with genetic variants through expo-
sure. The inverse variance-weighted (IVW) method was 
applied as the primary method, which equals a weighted 
regression of the SNP outcome effect on SNP exposure 
with a fixed y-intercept of zero [17]. The simple mode, 
weighted median, and MR-Egger test were determined 
to enhance the robustness of the data. Furthermore, to 
assess the robustness or potential bias of results, sensi-
tivity analyses were carried out. These included the MR-
Egger intercept test for pleiotropy, Cochrane’s Q test for 
heterogeneity, and leave-one-out analyses [18]. The het-
erogeneity analysis determined the differences between 
each IV, whereas the pleiotropy assessed the presence of 
horizontal pleiotropy.

Data sources
The data were sourced from GWAS. Table 1 depicts the 
detailed information of various GWAS datasets. This 
investigation employed a two-sample MR method to elu-
cidate the causal relationship of MG with 41 CK, 221 gut 
microbiotas (GM) (genus level), and 486 SM. In detail, 
the CK dataset comprised the meta-analysis summary 
statistics of GWAS on inflammatory CKs performed on 3 
Finnish cohorts (FINRISK 1997, YFS, and 2002) [19]. For 
gut microbial taxa, the summary statistics were acquired 
from a multi-ethnic large-scale GWAS meta-analysis 
carried out by the MiBioGen consortium and included 
19,790 participants from 18 cohorts [20]. MiBioGen is 
the most comprehensive effort for elucidating host-genet-
ics vs. microbiome correlation on a population scale and 
comprises 211 taxa (131 genera, 35 families, 20 orders, 16 
classes, and 9 phyla). The 486 human SM genetic datas-
ets were acquired from the Metabolomics GWAS Server 
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(http://metabolomics.helmholtz-muenchen.de/gwas/), 
which included 7824 European participants (KORA and 
TwinsUK cohorts) [21]. The MG-related genetic vari-
ants were identified from 3 datasets. The primary analysis 
MG dataset was obtained from the current largest meta-
GWAS performed in Italy and the US (1,873 patients vs. 
36,370 controls) [22]. Only MG patients who were anti-
AChR antibody-positive (AChR+) were selected for this 
study, and those who were positive for muscle-specific 
kinase (MuSK+) antibodies were excluded. To specify the 
age-dependent genetic heterogeneity, summary statistics 
of LOMG (1,278 patients vs. 33,652 controls) and EOMG 
(595 patients vs. 2,718 controls, aged ≤ 40 years) were 
separately analyzed. The validation datasets included UK 
(http://www.nealelab.is/uk-biobank) (234 patients vs. 
324,074 controls) and FIN (https://gwas.mrcieu.ac.uk/
datasets/finn-b-G6 MYASTHENIA/) (232 patients vs. 
217,056 controls) Biobanks [23]. The MG phenotype was 
identified using questionnaires completed by the par-
ticipants; data on MG subtypes were not applicable. All 
original articles had received ethical approval and the 
participants had provided informed consent. This inves-
tigation included individuals of European ancestry to 
minimize population stratification bias.

SNP selection criteria
To identify the most representative, unbiased, and key 
genetic variables, various quality control procedures 
were carried out to assess eligible crucial single nucleo-
tide polymorphisms (SNPs). (1) Based on minor allele 
frequency (MAF) > 0.01 and genome-wide significance 
(P < 5 × 108), SNPs related to the exposures were identi-
fied. (2) Considering that multiple SNPs might be present 
adjacent in linkage disequilibrium status, the Clumping 
step was carried out with r2  < 0.001, and the window 
size = 10,000  kb based on the European 1000 Genome 
Project, and those with the lowest p-value were retained 
[24]. (3) The exposure SNPs were isolated from the out-
come GWAS summary data. In case a specific exposure 
SNP was missing in the outcome GWAS, a proxy SNP in 
linkage disequilibrium was employed with the exposure 
SNP (minimum LD r2  = 0.8). (4) Ambiguous SNPs, from 
which effect allele could not be assessed, were eliminated 
by harmonizing the outcome SNPs and exposure. Pal-
indromic SNPs in the original datasets were reviewed 
separately to avoid undesired reverse effects. F-statistics 
evaluated the strength of the genetic instrument and a 
genetic variant with < 10 F-statistics for a specific IV was 
termed weak and not included in the MR analysis. The 
F-statistic was measured as follows:

Table 1 Summary of the source GWAS datasets used in this study
Datasets Phenotype Data sources Cases Ancestry
Exposure 1 41 kinds of cytokines University of Bristol 8,293 European
Exposure 2 221 gut microbiotas MiBioGen 19,790 European
Exposure 3 486 serum metabolites Metabolomics 7,824 European
Outcome 1 General myasthenia gravis IMGGC 1,873/36,370 European
Outcome 2 Early-onset myasthenia gravis IMGGC 595/3,313 European
Outcome 3 Late-onset myasthenia gravis IMGGC 1,278/33,652 European

Fig. 1 The primary design and assumptions of the bidirectional Mendelian randomization research: (1) instrumental variables are closely linked with 
exposure, (2) instrumental variables and any confounding factors were independent, and (3) instrumental variables could influence outcomes only via 
exposure. SNP: single-nucleotide polymorphism
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 F = R2 × (N − k − 1)/k(1 − R2)

where N  = the sample size, k  = the number of contained 
SNPs, and R2  = the proportion of exposure variance 
explained by a particular genetic variant. R2 was assessed 
as follows:

 R2 = 2 × β2 × EAF × (1 − EAF)

where β  = the estimated effect of the genetic variant, and 
EAF = the effect allele frequency [25]. Table 1 and S1 pro-
vide details of the genetic instruments used.

Two-sample mendelian randomization analysis
Figure 2 depicts the workflow of a two-sample MR analy-
sis. Various MR methods were employed to elucidate the 

causal impact of identified exposure variables on the out-
come. The primary analysis method was Inverse variance 
weighting (IVW), and all causality estimates were con-
verted into odds ratios (OR) of dichotomous phenotypic 
outcomes. MR Egger, weight median [26], simple model, 
and MR-PRESSO [27] were performed at the same time. 
Sensitivity analysis was performed, which included the 
MR-Egger intercept test for pleiotropy [18], Cochrane’s 
Q test for heterogeneity, and leave-one-out analyses to 
assess the robustness and potential bias in the results. 
Heterogeneity tests were carried out to examine the dif-
ferences between each IV, and pleiotropy tests examined 
the presence of horizontal pleiotropy. Finally, each expo-
sure’s statistical power was elucidated using a two-sided 
type-I error rate α = 0.05 [28].

Fig. 2 The Mendelian randomized study workflow revealed causal relationships between cytokines, gut microbiotas, and serum metabolites and the risk 
of myasthenia gravis. MR-PRESSO: MR pleiotropy residual sum and outliers, MR: Mendelian randomization, IVW: inverse variance weighting
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Evaluation of generation of genetic correlation and 
directionality
Linkage Disequilibrium Score (LDSC) regression was 
implemented to elucidate the genetic association across 
exposures to explore the probability of a shared genetic 
architecture [29]. Pre-calculated LD scores of European 
participants in the 1000 Genomes project were used for 
high-quality HapMap3 SNPs. Through LDSC regres-
sion, the genetic correlation (rg) between the two traits 
was evaluated by combining GWAS summary statistics 
and the LD scores with a regression model. Furthermore, 
the Steiger test was performed to avoid the resulting bias 
caused by reverse causality [30].

Metabolic pathway analysis
For metabolic pathways analysis, web-based Metaconflict 
5.0 (https://www.metaboanalyst.ca/) [31] was used. With 
the help of functional enrichment and pathway analysis 
modules, potential groups of metabolites or pathways 
linked with outcome biological processes were identified. 
This investigation used the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database, and for pathway analy-
sis, the significance level was set at 0.10.

Statistical analysis
Two Sample MR package [17] was used for MR analysis 
in R version 4.2.2. Other packages for data processing 
and graph generation included ieugwasr, tidyverse [32], 
readr, ldscr, and forestplot.

Results
The detailed MR analysis results on the association of 41 
CKs, 221 GMs, and 486 SMs exposures with overall MG, 
EOMG, and LOMG are presented in Supplement File 

1–3. Furthermore, the MR analysis results of replicate 
data of exposure factors and overall MG are displayed in 
Supplement File 4–5.

Associations with general myasthenia gravis risk
Figure  3 shows the CKs, GMs, and SMs significantly 
associated with general MG risk. MR analysis revealed 
that the quantity of SNPs for all exposures ranged from 
6 to 33, the proportion of variance explained (PVE, %) 
ranging from 3.3 to 25.9, and F-statistics for all expo-
sures were > 10. IVW analysis showed that among the 
CK exposure factors, IL-2 RA and MCP 1 MCAF were 
substantially related to a reduced risk of general MG. In 
the GMs, six types of bacteria were significantly corre-
lated with general MG. An increased level in Faecalibac-
terium and MollicutesRF9 were markedly linked with an 
increased risk of general MG, while Actinobacteria, Fam-
ilyXIII, Peptococcaceae, and Gammaproteobacteria were 
associated with a notably decreased risk of general MG. 
A total of nine SMs were significantly associated with 
general MG. Three of these factors (kynurenine, glycylva-
line, and vanillin) were linked with an increased general 
MG risk, whereas six factors (prasterone sulfate, oxidized 
bilirubin, decanoylcarnitine, androsterone sulfate, methi-
onine, and leucylleucine) were substantially associated 
with reduced risk of general MG (Fig.  1). Furthermore, 
it was found that metabolites significantly related to gen-
eral MG were mainly enriched in methionine and cyste-
ine metabolism (p = 0.08) and chlorophyll and porphyrin 
metabolism (p = 0.07) (Supplementary File 1). The esti-
mated value of associations obtained from MR-PRESSO 
and MR-Egger regression analysis were consistent with 
the data of the IVW method (Supplementary Table 1). 
The MR-Egger intercept test, Cochrane’s Q test, and 

Fig. 3 Forest plot for the causal effect of cytokines, gut microbiotas, and serum metabolites on the risk of MG derived from inverse variance weighted 
(IVW); MG: myasthenia gravis; OR, odds ratio; CI, confidence interval
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LOO analysis revealed no strong evidence of heterogene-
ity and directional horizontal pleiotropy (Fig. 1, Supple-
mentary Fig. 1). Steiger’s directionality analysis revealed 
that all the data were consistent with the correct result 
orientation exposure.

Associations with early-onset and late-onset MG risk
As Figs. 4 and 5 showed, fifteen and eighteen significant 
exposure factors were identified associated with EOMG 
and LOMG respectively, with SNP numbers ranging from 
6 to 42 and PVE (%) values ranging from 3.5 to 23.0. In 
the analysis of CKs, EOMG was significantly correlated 
with VEGF, while LOMG was significantly correlated 
with IL-2 RA and MCP 1 MCAF, indicating protective 

effects. Furthermore, the results of LOMG were more 
consistent with general MG while compare with EOMG. 
The GM analysis revealed that EOMG and LOMG were 
markedly correlated with seven and five species, respec-
tively. In EOMG, the OR value calculation results showed 
that Gammaproteobacteria, Intestinibacter, Defluviita-
leaceae, Defluviitaleaceae, and Blautia were protective 
factors, while Coprobacter and Faecalibacterium were 
risk factors. Meanwhile, in LOMG analysis, Actinobac-
teria and FamilyXIII showed protective effects, whereas 
Rhodospirillaceae, Butyricicoccus, and Clostridia were 
pathogenic factors. Moreover, Gammaproteobacteria 
was indicated to serve as a protective factor in EOMG 
and general MG, while Faecalibacterium was a significant 

Fig. 5 Forest plot for the causal effect of cytokines, gut microbiotas, and serum metabolites on the risk of EOMG derived from inverse variance weighted 
(IVW); LOMG: late-onset myasthenia gravis; OR, odds ratio; CI, confidence interval

 

Fig. 4 Forest plot for the causal effect of cytokines, gut microbiotas, and serum metabolites on the risk of EOMG derived from inverse variance weighted 
(IVW); EOMG: early-onset myasthenia gravis; OR, odds ratio; CI, confidence interval
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pathogenic factor. For LOMG and general MG, Acti-
nobacteria and FamilyXIII were identified as protec-
tive factors. In the exploration of SM, seven and eleven 
metabolites were found in EOMG and LOMG, respec-
tively, which were significantly correlated with outcome. 
Additionally, it was found that choline, docosapentae-
noic acid, and 1-methylxanthine were risk factors when 
EOMG was the outcome event, and oxidized bilirubin, 
5-dodecenoate, prasterone sulfate, biliverdin, and oleoyl-
carnitine were protective factors. The LOMG analysis 
indicated four metabolites as risk factors, including suc-
cinylcarnitine, glycylvaline, kynurenine, and O-methyl-
ascorbate, and seven were protective factors, including 
methionine, glucose, androsterone sulfate, decanoyl-
carnitine, xanthine, prasterone sulfate,and stearamide. 
Compared with the results of serum metabolite analysis 
of general MG showed that oxidized bilirubin, prasterone 
sulfate, and oleoylcarnitine were common significant 
causal factors for EOMG, whereas common significant 
associations factors for LOMG included glycylvaline, 
methionine, prasterone sulfate, kynurenine, androste-
rone sulfate, and decanoylcarnitine. Notably, prasterone 
sulfate was significantly associated with all three out-
comes. MR-PRESSO results were consistent with the 
IVW method (Supplementary Tables 2–3). The test of 
pleiotropy and heterogeneity did not show statistical sig-
nificance. Metabolic pathway analysis found that metab-
olites significantly associated with EOMG were enriched 
in the porphyrin and chlorophyll metabolism (p = 0.003) 
and caffeine metabolism (p = 0.03) pathways, and those 
associated with LOMG were enriched in the glycolysis /
gluconeogenesis (p = 0.08) pathway (Supplementary files 
2 and 3). LOO analysis demonstrated that the MR results 
were robust and reliable (Supplementary Figs. 2 and 3).

Overall, the results of MR, general MG, and EOMG 
analyses provided more significant causal factor coverage 
in the GM, and LOMG and general MG had more sig-
nificant associations in CKs and SM. This suggests that 
different factors may be highly correlated with MG at dif-
ferent onset stages.

Results of genetic correlation analysis
The LDSC regression revealed that Peptococcaceae 
(rg = 0.653, se = 0.260, p = 0.012), oxidized biliver-
din (rg = 0.296, se = 0.142, p = 0.037), and kynurenine 
(rg = 0.228, se = 0.105, p = 0.030) have a significant posi-
tive correlation with general MG. Whereas EOMG was 
positively correlated with Intestinibacter (rg = 1.240, 
se = 0.402, p = 0.002) and kynurenine (rg = 0.245, 
se = 0.111, p = 0.016) and glucose (rg = 0.341, se = 0.144, 
p = 0.017) demonstrated a positive genetic correlation 
with LOMG (Supplementary File 1–3).

Discussion
Myasthenia gravis belongs to the largest group of neu-
romuscular junction disorders. It is a B cell-mediated 
autoimmune disease caused by pathogenic autoantibod-
ies against the postsynaptic muscle endplate and mani-
fests with muscle fatigue and weakness [5, 33]. Although 
the prognosis for MG patients is good, and the treat-
ments include immunosuppressive, symptomatic, and 
supportive treatment, 10‒15% of patients show forms 
of uncontrollable disease and almost all patients require 
long-term medication [34]. MG patients are categorized 
into subgroups based on prognosis, optimum therapy, 
and diagnosis. MG is a reversible disorder that can be 
treated with intensity and optimism. Therefore, identi-
fying high-risk factors according to subgroups will help 
further understand their pathogenesis and the develop-
ment of better prevention and treatment.

It has been suggested that the incidence of MG is 
increasing because of the alterations in external caus-
ative factors, including infection and diet [35]. Previ-
ous reports have found that MG may be associated with 
CKs, GMs, and SMs. Furthermore, we have summarized 
the relevant methods and conclusions of the MR stud-
ies related to MG in the past five years (Table  2). This 
research is the first to elucidate the genetic correlations 
and causalities between CKs, GMs, and SMs and the risk 
of general MG, EOMG, and LOMG using the GWAS 
dataset. First, the genetic instrumental variables, which 
were substantially associated with different outcomes, 
were selected through MR and sensitivity analyses. Fur-
thermore, an enrichment analysis of metabolite pathways 
that were significantly associated was conducted, and 
LDSC was employed to analyze the genetic correlation 
between these significantly associated exposure factors 
and outcomes.

The results identified 20 significant exposure factors 
in general MG, including two CKs, six intestinal flora, 
and nine SMs. In the analysis of MG with different onset 
times, slightly different results were found from general 
MG, with fifteen and eighteen remarkably associated 
exposure factors found in EOMG and LOMG, respec-
tively. Further analysis demonstrated that EOMG and 
general MG have a significant similarity in IM-related 
factors, while LOMG has a high degree of overlap in CKs 
and SMs, which indicates that there are differences in 
exposure factors related to the high risk of MG in differ-
ent onset periods.

Myasthenia gravis and cytokines
The literature suggests that in MG, various CKs and 
lymphocytes induce pathogenic inflammation and 
autoantibodies at the neuromuscular junction. There-
fore, treatment targeting CKs could benefit patients 
with refractory MG [43–47]. . Furthermore, it has been 
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indicated that serum IL-21, a follicular Th cell-related CK 
[41], is linked with elevated QMG score in MG patients, 
which decreases after steroid treatment [48]. Moreover, 
the rate of IL-10 is increased after the treatment of MG 
[49]. IL-6, Th 22, and TNF-α have been reported to take 
part in the pathogenesis and treatment of MG [50, 51]. 
This research significantly associated IL-2 RA and MCP 
1 MCAF with general MG and LOMG risk. However, 
VEGF was more significantly associated with EOMG. It 
has been found in many studies that IL-2 is elevated in 
the serum of MG patients, and the receptor of IL-2 has 
great potential in the current field of immunotherapy 
research [52, 53], which validates the results of this inves-
tigation. However, MCP1, MCAF, and VEGF have not 
been reported in MG studies, which may be the direction 
for further experimental verification.

Myasthenia gravis and intestinal microbiota
Recently, it has been suggested that alterations in the 
gut microbiome are associated with the incidence and 
development of MG, and some changes in the abundance 
of gut microbes may weaken or promote an immune 
response, suggesting potential diagnostic biomarkers 
for MG prevention, diagnosis, and treatment [54, 55]. 
Qiu et al. indicated that in comparison with the healthy 
cohort, the gut microbiota abundance of bacterial taxa 
was altered in the MG group, with a sharp decrease in 
microbial abundance, especially in Clostridium [56]. In 
addition, in MG patients, microbial dysbiosis was asso-
ciated with serum levels of inflammatory biomarkers. 
Moris et al. found that the relative proportions of Verru-
comicrobiaceae and Bifidobacteriaceae were lower in MG 
patients, while Bacteroidetes and Desulfovibrionaceae 
were increased [57]. However, the causal relationships 
between intestinal flora and MG have not been studied. 
Here, it was found that EOMG and general MG have 

more similar GM biomarkers, indicating that intestinal 
flora might be crucially involved in the early develop-
ment of MG, which is conducive to the early diagnosis of 
MG. Many studies have indicated that Faecalibacterium, 
Actinobacteria, and Clostridia are related to the occur-
rence and development of MG, which is verified in this 
research [57–59].

Myasthenia gravis and serum metabolites
In recent years, metabolomic analysis has significantly 
increased the understanding of MG [60]. Derrick Black-
more et al. identified 5 library-matched unique and 7 
putative metabolites, including 2-methylbutyrylglycine, 
3-hydroxybenzoic acid, and 3-methoxytyramine [61]. 
Yonghai Lu used LC-MS combined with multivariate 
statistical analysis to identify and classify SM associated 
with MG. Different metabolic profiles were observed 
at EOMG and LOMG, and 9 biomarkers, including 
gamma-aminobutyric acid and 1-phosphosphingosine, 
were identified [62]. This MR analysis identified 486 SM; 
of these, 10 to 12 metabolites were substantially associ-
ated with general MG, EOMG, and LOMG, respectively, 
in addition to the as-yet-undefined metabolites. Fur-
thermore, kynurenine showed a significant genetic cor-
relation with general MG and LOMG in LDSC analysis, 
consistent with previous studies [63].

Limitations
This investigation has several limitations. (1) Although 
subgroup analyses of EOMG and LOMG were performed 
separately, other MG subgroups, including thymoma- 
and MUSK-associated MG, antibody-negative general-
ized MG, LRP4-linked with MG subtypes, and ocular 
MG, were not analyzed. However, the incidence of these 
subtypes is very low (2–4%), and they have no available 
GWAS data. Further analysis of subgroup risk factors 

Table 2 Summary of research methods and conclusions related to MG
Exposures Methods Conclusions
Vitamin D Bidirectional two-sample 

MR
Circulating vitamin D levels had no causal effect on MG and MG had no causal effect on circulat-
ing vitamin D [36].

COVID-19 LDSC; Two-sample MR No evidence of a genetic correlation or causal relationship among COVID-19 susceptibility, 
hospitalization, severity, and MG [37].

Ischemic stroke (IS) Bidirectional two-sample 
MR

Bidirectional MR analysis did not provide evidence to support a causal relationship between 
genetically predicted MG and IS [38].

PCSK9 inhibitor Two-sample MR No evidence of a genetic correlation or causal relationship among PCSK9 inhibitor and MG [39].
Physical activity and 
sedentary behavior

LDSC; two-sample MR; 
MVMR

Findings support a causal effect of sedentary behavior as measured by LST on MG [40].

Five autoimmune 
diseases

Bidirectional two-sample 
MR

Results supported a bidirectional causal association between MG and SLE/T1DM [41].

Gut microbiota Bidirectional two-sample 
MR

Research results yielded evidence of a causality connection in both directions between gut 
microbiota and myasthenia gravis [42].

T-cell traits Two-sample MR Three T-cell traits were identified to be causally protective for MG risk: (1) CD8 on terminally dif-
ferentiated CD8+ T cells; (2) CD4+ regulatory T proportion in T cells; (3) HVEM expression on total 
T cells and other eight T-cell subtypes (e.g., naïve CD4+ T cells) [16].

LDSC: linkage disequilibrium score; MVMR: multivariable extension analyses; LST: leisure screen time; SLE: systemic lupus erythematosus; T1DM: type 1 diabetes
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can be conducted in the future. (2) Although the selected 
SNPs indicated a strong association, shared SNPs can-
not be considered exact proxies for exposure as they do 
not adequately clarify the overall variance in compli-
cated traits. (3) Research on other ethnicities should be 
performed to verify the study conclusions since all the 
GWAS data was on patients of European ancestry.

Conclusion
In summary, this comprehensive two-sample MR study 
employed recent instrument variables to support poten-
tial CKs, GMs, and SMs markers associated with MG 
risk, stratified by MG subtypes. Furthermore, this work 
furnishes evidence on various risk factors associated 
with MG risk, varying with the timing of MG onset, 
highlighting the heterogeneity of the disease, which may 
help identify biomarkers for MG screening and improve 
understanding of MG occurrence.
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