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Abstract 

Alzheimer’s disease (AD) is a primary cause of dementia. The complement system is closely related to AD pathol‑
ogy and may be a potential target for the prevention and treatment of AD. In our study, we conducted a bioinfor‑
matics analysis to analyze the role of the complement system and its related factors in AD using Gene Expression 
Omnibus (GEO) data. We also conducted a functional analysis. Our study verified that 23 genes were closely related 
to differentially expressed complement system genes in diseases after intersecting the disease-related complement 
system module genes and differentially expressed genes. The STRING database was used to predict the interac‑
tions between the modular gene proteins of the differential complement system. A total of 21 gene proteins and 44 
interaction pairs showed close interactions. We screened key genes and created a diagnostic model. The predictive 
effect of the model was constructed using GSE5281 and our study indicated that the predictive effect of the model 
was good. Our study also showed enriched negative regulation of Notch signaling, cytokine secretion involved 
in the immune response pathway, and cytokine secretion involved in immune response hormone-mediated apop‑
totic signaling pathway. We hope that our study provides a promising target to prevent and delay the onset, diagno‑
sis, and treatment of AD.
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Introduction
Alzheimer’s disease (AD) is a primary cause of dementia. 
The number of patients with AD is expected to reach 100 
million by 2050. AD has become one of the most expen-
sive, deadliest, and burdensome diseases of this century 
[1]. Therefore, it is important to understand the patho-
genesis of AD and identify effective treatment methods.

At present, there are many hypotheses about the 
pathogenesis of AD such as: β-amyloid protein (Aβ) 
hypothesis, tau protein hypothesis, central cholinergic 
injury hypothesis, excitatory amino acid toxicity hypoth-
esis, and neuroimmunity hypothesis. Neural immunity 
has been proven to be closely related to the pathology of 
AD, and its important components: immune cells (such 
as T cells [2] and B cells [3]), and various immune active 
substances (such as complement system-related mol-
ecules [4] and neuroinflammatory factors [5]), have been 
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reported to be involved in the pathogenesis of AD. The 
complement system is an important part of the neuroim-
mune system and participates in multiple pathological 
processes in AD. C3 [6], complement receptor 1 (CR1) 
[7], C1q [8], and C3aR [6] are involved in Aβ metabolism. 
C4 [9], C3 [10, 11], and CR1 [12] were involved in tau 
pathology. C1q [13] and CR1 [12] are involved in neuro-
inflammation. C1q [8], C3 [8], and CR1 [12] are involved 
in synaptic formation. In conclusion, the complement 
system is closely related to AD pathology and may be a 
potential target for the prevention and treatment of AD.

As we all know, many factors are also involved in the 
complement system to regulate the pathological process 
of AD. Examining literatures from these years, we have 
found that the complement system can modulate nucleo-
tide binding oligomerization domain leucine rich repeat 
and pyrin domain containing 3 inflammasome [14], 
triggering receptor expressed on myeloid cells 2 [15], 
and several inflammation-related factors such as tumor 
necrosis factor [16, 17], interleukin-1 [16, 17], interleu-
kin-6 [16, 17], C-reactive protein [17], and interleukin-10 
[16]. The above research suggests that the complement 
system may be involved in the pathology of AD through 
its associated genes, proteins, and related signaling path-
way. However, there is currently no literature reporting 
on this aspect. Hence, in the present study, we focused on 
identifying the role of the complement system and its key 
related genes, proteins and signaling pathways in AD. We 
conducted a bioinformatics analysis to analyze the role 
of the complement system and its related factors in AD. 
Moreover, functional enrichment analyses and a diagnos-
tic prediction model were also carried out in our study. 
We hope that our study provides a promising target to 
prevent and delay the onset, diagnosis, and treatment of 
AD.

Methods
Data acquisition
The datasets generated and analyzed in the current study 
are available in the NCBI GEO repository (http://​www.​
ncbi.​nlm.​nih.​gov/​geo/) under the accession numbers 
(GSE109887 and GSE5281). The dataset originated from 
the middle temporal gyrus tissue. Our primary criterion 
for sample selection was the dataset sample size, followed 
by gene quantity in the gene expression matrix of the 
dataset. Through GEO database retrieval, we identified 
that GSE109887 had the largest sample size from middle 
temporal gyrus tissue and a more abundant gene quan-
tity in its expression matrix. Consequently, we desig-
nated it as the primary dataset for analysis (training set); 
with GSE5281, featuring fewer samples and genes, serv-
ing as the validation set. Both GSE109887 and GSE5281 
are datasets used for Expression Profiling by Array [18]. 

Data on AD patients data are available from the NCBI 
GEO database [19] (http://​www.​ncbi.​nlm.​nih.​gov/​geo/), 
and the serial number of the AD patients’ dataset is 
GSE109887. The data included samples of middle tempo-
ral gyrus tissue from 46 patients with AD and 32 healthy 
controls without AD. The gene microarray was deter-
mined using the GPL10904 Illumina HumanHT-12 V4.0 
expression bead-chip (gene symbol) platform. This data-
set was primarily treated as an analytical dataset.

In addition, we downloaded the AD patients’ validation 
dataset from the NCBI GEO database. The serial number 
of the AD patient data was GSE5281. The data included 
samples of middle temporal gyrus tissue from 16 patients 
with AD and 12 healthy controls without AD. Gene 
microarray analysis was performed using the GPL570 
(HG-U133_Plus_2) Affymetrix Human Genome U133 
Plus 2.0 Array. This dataset was primarily treated as an 
analytical dataset to validate the diagnostic models.

When conducting data analysis, we performed an anal-
ysis of abnormal/outlier samples on the training set data. 
As shown in the figure below, all samples, as represented 
by box plots and PCA analysis charts, indicate that the 
analyzed data set does not contain any abnormal samples 
(Supplementary Fig. 1).

Data preprocessing
For the above two datasets, firstly, we downloaded pre-
processed, standardized, and log2-transformed probe 
expression matrices from the GEO database. Secondly, 
we obtained annotation files for the platforms and con-
ducted a one-to-one matching between probe numbers 
and Gene symbols. Probes that did not have a match-
ing Gene symbol were excluded. In cases where differ-
ent probes mapped to the same gene, we calculated the 
mean expression value of these different probes to rep-
resent the final expression value for that gene, which 
was utilized in subsequent analyses. After preprocess-
ing, GSE109887 yielded an expression matrix of 31,700 
genes across 78 samples; whereas GSE5281 produced an 
expression matrix of 23,520 genes across 28 samples.

Differential gene analysis
Based on the analysis dataset, we employed the limma 
package [20] (Version 3.10.3, http://​www.​bioco​nduct​
or.​org/​packa​ges/2.​9/​bioc/​html/​limma.​html) and its 
classical Bayesian methods to analyze differential gene 
expression between AD and Control groups. All genes 
underwent analysis, resulting in corresponding P values 
and logFC values. Additionally, the BH correction was 
applied to obtain adjusted P-values (adj.p.val). We eval-
uated at two levels: differential fold change and signifi-
cance. The threshold for differential expression was set 
as adj.p.val < 0.05 and |logFC|> 0.585. After identifying 
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differentially expressed genes, a volcano plot was gen-
erated, and expression distribution heatmaps between 
normal and disease groups were separately illustrated 
[21–23]. After identifying differentially expressed 
genes, a volcano plot was generated, and expression 
distribution heatmaps between normal and disease 
groups were separately illustrated.

WGCNA (Weighted Gene Co‑expression Network analysis) 
was used to analyze disease‑associated complement 
system related gene modules
We conducted a search in the CTD database [24] 
(https://​ctdba​se.​org/) using the keyword “comple-
ment system” to retrieve genes related to the comple-
ment system. In addition, Additionally, a similar search 
was performed in GeneCards [25] (https://​www.​genec​
ards.​org/) using the keyword “complement system”, 
with a threshold set at Relevance score >= 10 [26, 27], 
to obtain complement system-related genes. The genes 
obtained from both databases were merged, remov-
ing duplicates, and then matched with the genes in the 
analysis dataset. The resulting expression matrix of 
complement system genes was utilized for WGCNA.

We utilized the R package WGCNA [28] (Ver-
sion 1.61, https://​cran.r-​proje​ct.​org/​web/​packa​ges/​
WGCNA/) to analyze the complement system genes, 
aiming to identify modules of genes that exhibit high 
levels of co-expression variation.

In the WGCNA algorithm, the elements of the gene 
co-expression matrix are weighted values represent-
ing the correlation coefficients between genes. The cri-
terion for selecting these weights is to ensure that the 
connections between genes within each gene network 
follow a scale-free network distribution. The specific 
weighted values are referred to as the soft power. Ini-
tially, we set a series of powers and then calculated the 
square value of the correlation coefficient between con-
nectivity k, p (k), and the average connectivity under 
each power value. An appropriate power value is then 
selected to achieve a scale-free network distribution 
among genes in the network. Subsequently, param-
eters were set based on clustering and dynamic prun-
ing (minModuleSize = 30: each module contained at 
least 30 genes; MEDissThres = 0.25: combining modules 
whose similarity degree was greater than 0.75). Genes 
with a high correlation were clustered into modules, 
and the correlation between modules and phenotypes 
was calculated. Here, the phenotype refers to whether 
the samples were diseased or normal. Modules with 
absolute correlation coefficients greater than 0.3 and 
significance values less than 0.05 were selected as mod-
ules closely related to diseases.

Acquisition of disease‑related differential complement 
system genes
Taking the intersection of the disease-related comple-
ment system module genes (method 2.4) and differen-
tial genes (method 2.3) obtained above, further identify 
differential complement system genes closely associ-
ated with the disease.

Interaction network analysis and co‑expression 
relationship analysis of corresponding proteins of genes 
in the differential complement system
In order to understand the protein-protein interaction 
(PPI) relationships among the differentially expressed 
complement system genes obtained above, we uti-
lized the online STRING database [29] (Version: 11.0, 
http://​www.​string-​db.​org/) for predicting and analyzing 
potential interactions between the proteins encoded 
by these genes. The species was set to Homo sapiens 
(homo), and the PPI score threshold was set to 0.4 
(medium confidence).

In addition, Pearson’s correlation coefficients were 
calculated between gene pairs in the differential com-
plement system to observe the relationships between 
gene co-expression trends.

Key gene screening and diagnostic model construction
Based on the differential complement system genes 
obtained above, we first calculated the diagnostic AUC 
value of each gene using the expression value of each 
gene in each sample, combined with the grouping 
information of the sample, and selected the gene with 
an AUC > 0.8 as the candidate gene related to the dis-
ease. Subsequently, the LASSO (least absolute shrink-
age and selection operator) algorithm was used to 
screen the feature genes. Glmnet package Version 4.0-2 
using R language 3.6.1 [20] (https://​cran.r-​proje​ct.​org/​
web/​packa​ges/​glmnet/​index.​html) for a preliminary 
screening of candidate genes associated with disease 
regression analysis The parameter was set to nfold = 20, 
that is, 20-fold cross-validation was carried out to 
screen characteristic genes, and the following formula 
was used to construct the model:

Here, βgene represents the LASSO regression coef-
ficient of each gene, and Expgene represents gene 
expression level in each sample.

After the risk score was obtained, we considered 
the median value as the critical value and divided the 

Riskscore = βgene × Expgene
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samples into HighRisk and LowRisk groups for subse-
quent analysis.

Furthermore, to validate whether the model has diag-
nostic value, GSE5281 was utilized. Firstly, the expression 
values of the model genes were extracted from each sam-
ple. Subsequently, in conjunction with the LASSO regres-
sion coefficients obtained earlier, the same formula was 
employed for model construction. ROC curves were then 
plotted by combining the sample grouping information.

Comparison of immune microenvironment 
between HighRisk group and LowRisk group
We downloaded 17 immune gene sets from the Import 
database (https://​www.​immpo​rt.​org/​home) [30] using 
the R package GSVA [31] (version: 1.36.2, http://​bioco​
nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​GSVA.​html), 
which is based on single-sample enrichment analysis 
(ssGSEA). We obtained significant differential P values 
between the high- and low-risk groups using the Wil-
coxon test. The Spearman correlation coefficients of each 
gene and the differential immune gene set in the model 
were calculated, and a correlation heat map was drawn.

In order to understand AD-like group and normal-like 
immune cells infiltrating differences between groups, 
here we use the R package MCPcounter (https://​github.​
com/​ebecht/​MCPco​unter) [32] algorithm based on the 
analysis of the expression level in the data set. The infil-
tration levels of eight types of immune cells (T cells, 
CD8 + T cells, cytotoxic lymphocytes, B lineage, NK cells, 
monocyte lineage, myeloid dendritic cells, and neutro-
phils) and two types of stromal cells (endothelial cells and 
fibroblasts) were calculated. Wilcoxon tests were used to 
compute the significance of differences in the infiltration 

levels of various immune or stromal cells between the 
HighRisk and LowRisk groups. Furthermore, we calcu-
lated Spearman correlation coefficients between indi-
vidual genes in the model and differential immune cell 
infiltrations, and a correlation heatmap was generated to 
visualize these relationships.

In addition, the Wilcoxon test was used to compare dif-
ferences in HLA family genes between the AD-like group 
and normal-like groups. The Pearson correlation coeffi-
cient between each gene and the HLA family gene in the 
model was calculated to construct a correlation heat map.

Pathway enrichment analysis of the HighRisk and LowRisk 
groups
A total of 51 HALLMARK gene sets were downloaded 
from MSigDB v7.1 [33] (http://​softw​are.​broad​insti​tute.​
org/​gsea/​msigdb/​index.​jsp), and these genes were used 
as the background for enrichment analysis. The enrich-
ment scores of each HALLMARK pathway in each sam-
ple were calculated based on the expression matrix of the 
analysis data set by the GSVA (gene set variation analy-
sis) algorithm. A scoring matrix was obtained using the 
GSVA R-packet. Then, a difference analysis of the High-
Risk group vs. the LowRisk group was carried out for 
each pathway using the R packet limma. The results were 
considered as significant pathways after screening “BH” 
adjusted (adj. P value < 0.05 and |t value|> 2).

GO BP and KEGG enrichment analysis of key model genes
The key model (in process) and KEGG pathway enrich-
ment analyses were performed using the Cytoscape 
Software (version 3.4.0, http://​chian​ti.​ucsd.​edu/​cytos​
cape-3.​4.0/) [34] with the Cluego plugin [35] (version 2.5.9, 

Fig. 1  Data preprocessing and Difference analysis. A The differential volcanic map; B the thermal map

https://www.immport.org/home
http://bioconductor.org/packages/release/bioc/html/GSVA.html
http://bioconductor.org/packages/release/bioc/html/GSVA.html
https://github.com/ebecht/MCPcounter
https://github.com/ebecht/MCPcounter
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://chianti.ucsd.edu/cytoscape-3.4.0/
http://chianti.ucsd.edu/cytoscape-3.4.0/
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https://​apps.​cytos​cape.​org/​apps/​cluego). The significance 
threshold was set at a P value < 0.05. The Cytoscape soft-
ware was used to visualize the enrichment results.

Results
Data preprocessing and difference analysis
Using the above method, two sets of data were down-
loaded, preprocessed, and annotated. According to the 
threshold value, 187 upregulated and 280 downregulated 
genes were identified. For more details, see Supplementary 
Table 1. Differential volcanic and thermal maps are shown 
in Fig. 1A and B.

WGCNA (Weighted Gene Co‑expression Network analysis) 
was used to analyze disease‑associated complement 
system related gene modules
Based on a previously described method, first a total of 
760 gene expression matrices related to the comple-
mentation system were matched. We then chose six as 
the soft threshold in the WGCNA analysis according to 
Fig. 2A and B. Second, based on clustering and dynamic 
pruning methods- high-correlation genes were aggre-
gated into modules; which were then clustered. The mod-
ules with correlation coefficients greater than 0.75, that 
is, the modules with dissimilarity coefficients less than 

Fig. 2  WGCNA of disease-associated complement system related gene. A The relationship between scale-free topology model fit 
and soft-threshold power; B The relationship between mean connectivity and soft-threshold power; C Clustering of module eigengences; D Cluster 
of dendrogram

https://apps.cytoscape.org/apps/cluego
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0.25; were merged and finally integrated into four mod-
ules (gray indicates genes with less than any enriched 
module) (Fig. 2C and D).

Furthermore, by calculating the correlation between 
the feature vector gene of each module (the feature vector 
gene is the first principal component gene E of a specific 
module, representing the overall level of gene expression 
in the module) and the phenotype (whether the sample 
is OA or Normal), as shown in Fig. 3, it can be seen that 
the turquoise module (162 genes; correlation coefficient 
r = 0.51 and P Value < 0.01) had the most significant positive 
correlation with AD; and the blue module (102 genes; cor-
relation coefficient r = 0.33, P Value = 0.003) also showed a 
significant positive correlation with AD. The yellow module 
(31 genes; correlation coefficient r = 0.43 and P < 0.01) was 
significantly negatively correlated with AD.

Acquisition of disease‑related differential complement 
system genes
A total of 23 genes were confirmed to be closely related to 
the differential complement system genes of diseases after 
intersecting the disease-related complement system module 
genes and differential genes. As shown in Fig. 4, 18 genes 
(GFAP, PDGFRB, NFKBIA, TNFRSF1B, NOTCH1, BCL6, 

CSF1R, LEP, DCLRE1C, KCNJ10, MP2K1, VIP, SNCA, 
ENO2, SST, UCHL1, HPRT1, and STAT4) belonged to the 
turquoise module; three genes (CD14, ITGB2, and SPP1) 
belonged to the blue module; and two genes (STX1A and 
SYP) belonged to the yellow module. These three modules 
were deemed as pivotal module genes associated with AD.

Protein interaction network and correlation analysis
The STRING database was used to predict the interac-
tions between the modular gene proteins of the differential 
complement system. As shown in Fig.  5A, 21 genes and 
44 interaction pairs showed close interactions. We further 
calculated the Pearson correlation coefficient between the 
genes and significant P-values for the 23 differences in 
the complement system. Except for SPP1, the other genes 
had close and significant positive or negative relation-
ships (Fig. 5B). The results of PPI analysis suggest potential 
interactions between the complement system and various 
related proteins, providing new directions for our future 
exploration of the role of the complement system in AD.

Key gene screening and diagnostic model construction
Using the method described above, 23 genes related to 
the complement system were identified. The diagnostic 

Fig. 3  The correlation between the feature vector gene of each module
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AUC value was calculated by combining it with the 
sample grouping. Eleven genes with an AUC > 0.8 were 
obtained (which were initially used as disease-related 
candidate genes) and were identified.

Further, LASSO regression was performed for these 
11 genes- and the results are shown in Fig. 6A-B. Six key 
characteristic genes, namely NFKBIA, TNFRSF1B, BCL6, 
KCNJ10, VIP, and SST, were identified.

Fig. 4  A total of 23 genes were confirmed closely related differential complement system genes of diseases after intersected of disease-related 
complement system module genes and differential genes

Fig. 5  Protein interaction network and correlation analysis. A PPI network. There were 21 genes; B the Pearson correlation coefficient 
between the gene and significant P value values in the 23 differences of the complement system
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Fig. 6  Key gene screening and diagnostic model construction. A-B Six key characteristic genes NFKBIA, TNFRSF1B, BCL6, KCNJ10, VIP and SST were 
obtained. C-D RiskScore model was constructed by combining the above 6 genes and corresponding regression coefficients. E-F The prediction 
effect of the model
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According to the method described above, the 
RiskScore model was constructed by combining the 
above six genes and their corresponding regression coef-
ficients. The results are shown in Fig. 6C-D. According to 
the ROC curve, the area under the curve exceeded 0.85: 
indicating that this model had a good disease prediction 
effect.

To verify the prediction effect of the model, it was 
reconstructed in GSE5281 according to this same 
method- and the results are shown in Fig. 6E-F. The area 
under the curve (AUC) is above 0.9, which is consistent 
with previous conclusions, indicating that the prediction 
effect of the model is good.

Comparison of immune microenvironment 
between HighRisk group and LowRisk group
According to the method described above, 17 types of 
immune gene sets were analyzed in accordance with 
the method described for the HighRisk and LowRisk 
group comparisons. The results showed that a total of 14 
immune gene sets showed significant differences between 
high and low-risk groups, as shown in Fig.  7A. For this 
purpose, a correlation heat map was drawn between the 
model genes and the 14 different immune gene sets as 
shown in Fig. 7B. The relationships with the largest posi-
tive and negative correlation coefficients were selected 
for display, as shown in Fig. 7C-D.

Furthermore, the immune and stromal cells in the 
high- and low-risk groups were compared. As shown in 
Fig. 7E, seven types of immune cells showed significant 
differences; except for NK cells in the high-risk group, 
which were lower than those in the low-risk group. The 
other 6 kinds of cells were significantly higher in the 
high-risk group than in the low-risk group. A heat map 
of the correlation between the model genes and differ-
entially expressed immune cells is shown in Fig. 7F. The 
relationships with the largest positive and negative cor-
relation coefficients were selected for display, as shown 
in Fig. 7G-H.

According to the method described above, we also 
compared the differences in HLA family genes between 
the high- and low-risk groups, as shown in Fig.  7I. Fif-
teen and nine genes showed significant differences, 

respectively. A correlation heat map of the model genes 
and different HLA family genes was drawn, as shown 
in Fig.  7J. The relationship with the largest positive and 
negative correlation coefficients was selected for display, 
as shown in Fig. 7K-L. The results of this section suggest 
that the complement system may be involved in the path-
ological mechanisms of AD through interactions with 
immune-related molecules. This points towards future 
research directions of AD.

Pathway enrichment analysis in high‑risk and low‑risk 
groups
The enrichment scores of each HALLMARK path in 
each sample were calculated using the GSVA algorithm. 
According to the method threshold, 15 HALLMARK 
pathways in HighRisk and 19 low-risk HALLMARK 
pathways were significantly enriched; as shown in Fig. 8.

GO BP and KEGG enrichment analysis of key model genes
A total of 67 GO BP were enriched in Fig. 9A); however, 
no KEGG pathways were enriched. Mainly enriched neg-
ative regulation of Notch signaling, cytokine secretion 
involved in the immune response, hormone-mediated 
apoptotic signaling pathway, and other key functions 
are shown in Fig.  9B. These studies suggest that the 
complement system may be involved in the pathologi-
cal processes of AD through the above signaling path-
ways. However, the specific mechanisms require further 
validation.

Discussion
In this study, the gene information related to AD was 
analyzed using biogenic analysis. We also identified dif-
ferences in the regulation of complement-system-related 
proteins associated with them. A model was constructed 
to predict the molecular characteristics of AD. Moreover, 
the relationship between the complement system and AD 
affecting immune-related genes and inflammatory factors 
is discussed. This is the first biogenic analysis to compre-
hensively explore the roles and possible mechanisms of 
the complement system in AD.

Late-onset AD (LOAD), which accounts for approxi-
mately 95% of AD cases, is a multifactorial disease with 

(See figure on next page.)
Fig. 7  Comparison of immune microenvironment between HighRisk group and LowRisk group. A The results showed that a total of 14 immune 
gene sets showed significant differences between high and low risk groups. B The correlation heat map between model genes and 14 different 
immune gene sets was drawn. C-D The relationship with the largest positive and negative correlation coefficients was selected for display; E 7 
kinds of immune cells showed significant differences; F The heat map of the correlation between model genes and differential immune cells; 
G-H The relationship with the largest positive and negative correlation coefficients was selected for display; I The differences of HLA family 
genes between the HighRisk group and the LowRisk group; J 9 genes showed significant differences. J The correlation heat map of model 
genes and different HLA family genes; K-L The relationship with the largest positive correlation coefficient and negative correlation coefficient 
was selected to display
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Fig. 7  (See legend on previous page.)
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a heritability of over 58% [36]. Since 2009, large genome-
wide association studies (GWAS) have identified more 
than 75 independent genetic risk factors for LOAD [37–
40]. Several studies have been conducted to explore the 
link between complement system genes and AD. Among 
the GWAS statistically significant (GWS) hits are two 
genes encoding proteins of the complement pathway: 
CR1 encoding the membrane protein complement recep-
tor 1 (CR1) and CLU encoding the plasma regulator clus-
terin [38]. CR1 and CLU are among the most significant 
GWAS hits, ranking high in the top 10. These strong 
associations provide the impetus for this review of com-
plement genetics in LOAD. Our study identified several 
complement system-related genes in AD. Among the 23 
genes previous studies have shown their correlation with 
AD, we have: GFAP [41, 42], PDGFRβ [43–45], NFKBIA 
[46], TNFRSF1B [47], NOTCH1 [48], BCL6 [49], CSF1R 
[50], LEP [51], DCLRE1C [52], KCNJ10 [53], MAP2K1 
[54], VIP [55], SNCA [56], ENO2 [57], SST [58], UCHL1 
[59], HPRT1 [60], STAT4 [61], CD14 [62], ITGB2 [63], 
SPP1 [64], STX1A [65], and SYP [66]. And these genes 

are involved in the regulation of molecules associated 
with the complement system, for instance, GFAP [67], 
PDGFRβ [68], NFKBIA [69], TNFRSF1B [70], NOTCH1 
[71], BCL6 [72], CSF1R [73], LEP [74], DCLRE1C [75], 
KCNJ10 [76], MAP2K1 [77], VIP [78], SNCA [79], ENO2 
[80], SST [81], UCHL1 [82], HPRT1 [83], STAT4 [84], 
CD14 [85], ITGB2 [86], SPP1 [87], STX1A [88], and SYP 
[89]. However, few studies have discussed their role in 
AD pathology by modulating the complement system, 
our study may be a new perspective for our future explo-
ration of the relationship between AD and the comple-
ment system. A systematic discussion of the relationship 
among these genes, the complement system, and AD 
is likely to become one of the directions for future AD 
research. The above results show that these proteins are 
interrelated, and further research is needed to under-
stand their mechanisms. Our research revealed enrich-
ment in the negative regulation of the Notch signaling 
pathway, cytokine secretion associated with the immune 
response pathway, and the hormone-mediated apop-
totic signaling pathway. These signaling pathway may 

Fig. 8  Pathway enrichment analysis in high-risk and low-risk groups
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play a vital role in AD pathology in conjunction with the 
complement system. However, further experiments are 
required to investigate this hypothesis.

It is well known that AD lacks effective diagnostic 
measures. Hence, it may be worthwhile looking into 
potential brain complement specific biomarkers which 
can indicate the susceptibility of AD. The classic AD 
biomarkers are core CSF biomarkers: Aß, t-tau, and 

phosphorylated tau protein (p-tau), and PET imaging of 
glucose metabolism and amyloid deposition. However, 
some patients with early-stage AD cannot be diagnosed 
using these means [90]. Our findings propose that the 
diagnostic potential for AD could be enhanced through 
the consideration of a set of six key genes (NFKBIA, 
TNFRSF1B, BCL6, KCNJ10, VIP, and SST). When we 
queried recent literature, we found that NFKBIA was 

Fig. 9  GO BP and KEGG enrichment analysis of key model genes. A A total of 67 GO BP; B Other key functions
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associated with AD in some articles [91–95]. The rela-
tionship between the TNFRSF1B variant rs976881 and 
the levels of soluble TNFR2 in the cerebrospinal fluid 
influences various markers of AD severity and cogni-
tive domains [47]. It is reportedly achieved by targeting 
BCL6, which presents a promising avenue to explore for 
the prevention and treatment of Aβ-induced neuronal 
damage in AD [96]. Moreover, genetic screening revealed 
that mutations in KCNJ10 play a significant role in neuro-
degenerative disorders such as AD [53]. VIP may signifi-
cantly boost microglial uptake of fibrillar Aβ42 and this 
heightened phagocytic function relied on the activation 
of the Protein kinase C signaling pathway in AD pathol-
ogy [97]; VIP was also reported to be involved in Aβ 
accumulation in AD [98]. A study pointed out an Inter-
action between Aβ and SST [58]. The validation experi-
ments further affirmed the robust prediction accuracy 
of our model. It suggests that the model might serve as a 
diagnostic tool for AD by incorporating classic AD bio-
markers and screening for these identified key genes.

Conclusions
A total of 21 gene proteins and 44 interaction pairs showed 
close interactions. We screened key genes and created a 
diagnostic model. The predictive effect of the model was 
constructed using GSE5281 and our study indicated that 
the predictive effect of the model was good. Our study also 
showed enriched negative regulation of Notch signaling, 
cytokine secretion involved in the immune response path-
way and hormone-mediated apoptotic signaling pathway. 
In this study, key complement system-related genes with 
good diagnostic value were screened through bioinfor-
matics analysis, which provided some clues for a better 
understanding of the potential molecular mechanisms of 
AD. The main limitation of our study is that it primarily 
involves bioinformatics analysis, lacking relevant clinical 
or further experimental validation. Hence, these findings 
of our study must be verified in future studies.
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