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Adult-onset combined oxidative e

phosphorylation deficiency type 14 manifests
as epileptic status: a new phenotype
and literature review

Xu Zhang', Feng Xiang', Desheng Li', Fei Yang', Shengyuan Yu' and Xiangqing Wang"

Abstract

Background Combined oxidative phosphorylation deficiency (COXPD) is a severe disorder with early onset

and autosomal recessive inheritance, and has been divided into 51 types (COXPD1-COXPD51). COXPD14 is caused

by a mutation in the FARS2 gene, which encodes mitochondrial phenylalanyl-tRNA synthetase (mt-PheRS), an enzyme
that transfers phenylalanine to its cognate tRNA in mitochondria. Since the first case was reported in 2012, an increas-
ing number of FARS2 variations have been subsequently identified, which present three main phenotypic manifesta-
tions: early onset epileptic encephalopathy, hereditary spastic paraplegia, and juvenile-onset epilepsy. To our knowl-
edge, no adult cases have been reported in the literature.

Methods We report in detail a case of genetically confirmed COXPD14 and review the relevant literature.

Results Approximately 58 subjects with disease-causing variants of FARS2 have been reported, including 31 cases
of early onset epileptic encephalopathy, 16 cases of hereditary spastic paraplegia, 3 cases of juvenile-onset epilepsy,
and 8 cases of unknown phenotype. We report a case of autosomal recessive COXPD14 in an adult with status epi-
lepticus as the only manifestation with a good prognosis, which is different from that in neonatal or infant patients
reported in the literature. c467C>T (p.T156M) has been previously reported, while c.119_120del (p.E40Vfs*87)

is novel, and, both mutations are pathogenic.

Conclusions This case of autosomal recessive COXPD14 in an adult only presented as status epilepticus, which is dif-
ferent from the patients reported previously. Our study expands the mutation spectrum of FARS2, and we tended
to define the phenotypes based on the clinical manifestation rather than the age of onset.

Keywords Combined oxidative phosphorylation deficiency type 14, FARS2 gene, Adult, Epileptic status

Introduction

Enzyme deficiencies in the oxidative phosphoryla-
tion (OXPHOS) system can be caused by mutations in
mitochondrial or nuclear DNA. Ninety-nine percent of
mitochondrial proteins are encoded by nuclear genes,
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of nuclear-encoded enzymes that facilitate conjugation
of each of the 20 amino acids to its cognate tRNA mol-
ecule [1]. To date, COXPD has been divided into 51 types
(COXPD1-COXPD51), based on different disease-caus-
ing genes. COXPD14, caused by mutation of the FARS2
gene, mainly manifests as three phenotypes: early onset
epileptic encephalopathy [2—11], hereditary spastic para-
plegia [10, 12—18], and juvenile onset epilepsy [19-21].
FARS?2 is a nuclear gene located on the short arm of chro-
mosome 6 (6p25.1) that consists of seven exons spanning
over 510 kb [7]. Since the first case was reported in 2012
[2], a total of 55 subjects have been reported in the Eng-
lish-language literature, including seven Chinese cases
[11, 13, 20]. In addition, three cases have been reported
in the Chinese literature [22, 23].

Here, we present the clinical, and radiological findings
and molecular genetics of a Chinese adult affected by
COXPD14 and found two compound heterozygous vari-
ants in FARS2 by whole-exome sequencing (WES), which
further expanded the molecular and phenotypic spec-
trum of COXPD14 caused by genetic defects in FARS2.
To our knowledge, the present study is the first to report
adult onset COXPD14. In addition, we retrospectively
reviewed and summarized the clinical and radiologi-
cal findings and molecular data of patients with FARS2
deficiency.

Clinical report

Clinical manifestations

The index patient, a female, was born to nonconsanguin-
eous Chinese parents with normal neurodevelopment
and no risk factors for epilepsy. Two healthy children
were delivered by two cesarean sections within 5 years
before the onset of the disease. When she was 27 years
old and 3 months after the second delivery, she was
observed to have a first seizure characterized by status
epilepticus, with a total of five seizures of status epilepti-
cus. Each attack induced fatigue, mood fluctuations, and
lack of sleep. All seizures showed tonic clonus and loss
of consciousness, followed by right upper limb jitter, and
each attack was treated with endotracheal intubation, a
ventilator, and sedative drugs. No headache, vision loss,
diplopia, limb weakness, or myoclonus was observed.
After the onset of the disease, she began to experience
personality changes, irritability, unresponsiveness, mem-
ory decline, and computational decline. Upon admission,
physical examination showed a sluggish reaction, slightly
poor listening and understanding, verbal expression dis-
orders, decreased near and far memory, and decreased
numeracy. The location, time, and character orientation
decreased. The cranial nerve examination was normal.
There was no apparent muscle atrophy. Both muscle tone
and strength were normal. No abnormalities were found
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in the sensory system examination, and bilateral plantar
responses were flexor. The patient was prescribed lev-
etiracetam, sodium valproate, oxcarbazepine, and pheno-
barbital to control seizures.

We performed an electroencephalogram (EEG) that
immediately showed unilateral, persistent, spike-slow
complex waves in the left frontal, subfrontal, and middle
temporal areas (Fig. 1). Laboratory examination indicated
that antibodies related to autoimmune encephalitis and
paraneoplastic antibodies in the serum or cerebrospinal
fluid were negative. Thyroid function, rheumatic immune
indices, and tumor marker levels were negative. The lac-
tate/pyruvate ratio in the serum and lactate levels in the
cerebrospinal fluid were normal. The routine indices of
the cerebrospinal fluid and the biochemical, immune,
and smear tests were normal.

After admission, craniocerebral magnetic resonance
imaging (MRI) revealed that the bilateral frontal lobe
volume had slightly decreased, and the thin corpus callo-
sum and lateral ventricle were slightly enlarged. For com-
parison, craniocerebral MRI one month before admission
showed abnormal signals in the left frontal lobe and right
cerebellum, and hyperintensity on diffusion-weighted
imaging (DWI) and fluid-attenuated inversion recovery
(FLAIR) signal abnormalities, which disappeared after
1 month (Fig. 2). At the same time, positron emission
tomography-CT (PET-CT) at 10-2020 revealed diffuse
decreased metabolic heterogeneity in the bilateral cer-
ebral hemispheres, mainly in the left frontal lobe, and a
diffuse decrease in metabolism in the right cerebellum,
considering the change in crossed cerebellar diaschi-
sis (CCD) (Fig. 3). After admission, cerebral perfusion
weight imaging indicated a slight decrease (CBF) in the
left frontal lobe that was considered a secondary change
(Fig. 4).

Molecular genetic analysis

Genetic testing of the mitochondria revealed no abnor-
malities. The FARS2 gene (NM_006567.3 exon2) com-
plex heterozygous mutation was identified using whole
exome sequencing (WES) (Fig. 5). The c.119_120 del
(deletion mutation), resulting in amino acid change p.
E40Vfs * 87 (terminated after—87 b frameshift mutation),
has not been reported in the HGMD pro database [24].
c.467C>T (cytosine>thymine), resulting in the amino
acid change p.T156M (threonine>methionine), was
reported as a pathogenic variation associated with epi-
leptic encephalopathy with unknown onset [25, 26]. Fam-
ily validation showed that the heterozygous mutation was
a compound heterozygous mutation from the parents,
which was consistent with the rule of autosomal recessive
inheritance. According to the American College of Medi-
cal Genetics and Genomics (ACMG) guidelines [27], the
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Fig. 1 EEG showed unilateral, persistent spike-slow complex waves in the left frontal area, subfrontal area and middle temporal area

Fig. 2 Brain MRI of the patient on 10-2020. A-D Abnormal signal in the left frontal lobe (white arrow). E Hyperintensity of the right cerebellum
on FLAIR (yellow arrow). Brain MRI on 11-2020. F-J All the above abnormal signals disappeared

mutation ¢.119_120del can be rated as a likely pathogenic
mutation (PVS1+PM2; PVSI1: frameshift mutation of
genes with LOF mechanism; PM2: no report in normal
human variation database), and variation ¢.467C>T can
be rated as a likely pathogenic variation (PM2+PM3_
Strong; PM2: recessive gene variation has a low popula-
tion frequency; PM3_Strong: trans distribution with two

suspected pathogenic variants) (Table 1). In addition,
Mutation-Taster and FATHMM software proved that the
above two sites were pathogenic mutations. In summary,
the complex heterozygous variation observed in this
patient is theoretically pathogenic. The final diagnosis
was confirmed to be combined oxidative phosphoryla-
tion defect type 14 (COXPD14).
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Fig. 3 PET-CT of the patient on 10-2020, showed diffuse decreased
metabolic heterogeneity in the bilateral cerebral hemispheres,
mainly in the left frontal lobe, and a diffuse decrease in metabolism
in the right cerebellum, which was considered CCD

Review of COXPD14

Here, we summarize all reported variations in FARS2.
We used “FARS2; “COXPD14” and “combined oxi-
dative photosynthesis defect type 14” as keywords to
search for relevant literature in biomedical literature
database of the National Center for Biotechnology
(NCBI) and China national knowledge infrastructure
(CNKI). Analysis of the data of patients with FARS2
gene mutations reported before February 2023 was
performed. The genetic and clinical features of previ-
ously reported cases of FARS2 variants are summarized
in Table 2 according to the literature review. Approxi-
mately 58 subjects with disease-causing variants of
FARS2 have been reported, including 31 cases of early-
onset epileptic encephalopathy, 16 cases of hereditary
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spastic paraplegia, 3 cases of juvenile-onset epilepsy,
and 8 cases of unknown phenotypes.

We summarized all the variations in FARS2 that
have been reported to date (Table 2). These mutations
included 37 missense mutations, 2 nonsense mutations,
2 frameshift deletions, 1 silent mutation, 1 splice-site
mutation, and 1 in-frame and 5 out-of-frame deletions.
We generated lollipop plots to visualize FARS2 mutations
using Protein-Paint (Fig. 6). Patients carry these muta-
tions in an autosomal recessive manner: compound het-
erozygous with two mutations or homozygous with one
mutation.

The most commonly reported variant is Y144C, which
was observed in ten families with homozygous status and
an additional family with heterozygous status, and all
reported families with this variant are Arab. The second
most common variant is G309S, with three homozygous
Korean families, two heterozygous Chinese families, and
one heterozygous Hispanic family. The variant D142Y
was found in only one homozygous and one heterozygous
Chinese family. A literature review revealed regional dif-
ferences in the gene variants of COXPD14.

Most of the early-onset epileptic phenotypes (24/31)
occurred in Asians, especially Arabs (14/24), and nei-
ther of the other two phenotypes were found in Arabs
(Table 3). COXPD14 is inherited in an autosomal reces-
sive manner; more than half of the early-onset epilep-
tic phenotypes (15/26) were born from consanguineous
parents. In contrast, in the hereditary spastic paraplegia
phenotype, these conditions are rare in the Asian popula-
tion, and most were nonconsanguineous.

The age of onset in subjects with the early onset epi-
leptic phenotype (n=31) was from birth to six months,
in comparison the age of onset from one month to five
years in subjects with the hereditary spastic paraplegia
phenotype (n=16) and the age of onset from eight to
15 years in those with the juvenile-onset epilepsy pheno-
type (n=3).

All individuals with the hereditary spastic paraplegia
phenotype were alive at the time of reporting and showed

Fig.4 CBF, slight decrease in the left frontal lobe considered to be a secondary change
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Fig. 5 Partial DNA sequence chromatograms of FARS2. The red circles represent the location of the variants ¢.119_120 del (A) and c467C>T (D)

in the FARS2 gene, inherited from the father (B) and mother (F)

Table 1 Pathogenicity analysis of the two FARS2 variants

Gene Mutations Amino acid Status  Normal Validation of ACMG Ratingof HGMD References
change population pedigree variation Transcriptional
carrying rate version of the

gene subregion

FARS2  c.119_120del  p.E40Vfs*87 Novel - Father source Likely pathogenic ~ NM_006567.3 -
exon2

FARS2  c467C>T p.T156M Known  0.0000886 Mother source Likely pathogenic ~ NM_006567.3 PubMed_
exon2 1D:27652284

ACMG American College of Medical Genetics and Genomics, HGMD Human Gene Mutation Database

long-term survival with an age range between 5.5-
41 years, compared to more than 60% of subjects (17/27)
with the early-onset epileptic phenotype having died at
the time of reporting.

The epileptic phenotype of FARS2 deficiency was the
most severe. Three patients died within the first two
months of life, and no seizures were observed; all the
remaining patients (28/28) suffered from epilepsy, and
most of them started in the first 6 months of life. Devel-
opmental delay was observed in all subjects (29/29)
mentioned in the literature with early-onset epileptic
phenotypes, while less severe developmental delay was
observed in subjects with the other phenotypes.

Brain MRI showed a wide range of abnormalities
including diffuse brain atrophy (18/23), thin corpus cal-
losum (12/23), lesions in the dentate nuclei and cer-
ebellum, and signal abnormalities in the putamen,
caudate nucleus, and white matter. Diffuse cortical and

subcortical atrophy is a common finding, especially in
later stages of the disease. However, this is considered a
nonspecific finding because it is similar to most advanced
neurometabolic diseases. Thinning of the corpus callo-
sum was observed in the early-onset epileptic phenotype
but not in other phenotypes. A thin corpus callosum was
found in our adult-onset patient, indicating that it may
appear in late-onset epilepsy phenotypes of COXPD14,
which reflects the markedly reduced cerebral white mat-
ter volume.

Of the previously reported cases with the early onset
epilepsy phenotype, more than half of the subjects
(14/23) had evidence of liver disease, and there was a con-
sistent elevation of lactic acid levels in almost all subjects
(23/24). CSF lactate levels were available for nine subjects
and were elevated in all patients. In contrast, none of the
subjects with the other two phenotypes showed evidence
of liver disease.
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Fig. 6 The mutations include 37 missense mutations, 2 nonsense mutations, 2 frameshift deletions, 1 silent mutation, 1 splice-site mutation, and 1

in-frame and 5 out-of-frame deletions

Table 3 Clinical feature of reported FARS2 subjects [2-23]

early-onset epileptic
encephalopathy

hereditary spastic paraplegia juvenile onset epilepsy

Number 31
Male: female 11:18
Ethnicity, Asian 24/31
Consanguinity 15/26
Onset age 1 day-10 month
Alive 10/27
Developmental delay 29/29
seizures 28/31
Heterozygous 11/31
Brain atrophy 18/23
Thin corpus callosum 12/23
Hepatic disease 14/23
Increased transaminases 15/22
Elevated lactate 23/24
Increased CSF lactate 9/9

16 3

6:10 1:2

4/13 1/3

4/12 0

1 month-5 years 8-16 years
16/16 1/3

7/13 1/3 (motor and speech)
3/15 3/3

11/16 3/3

3/14 2/3

0

0

4/6

4/10 1/3

2/4 0

Discussion

Here, we report one FARS2 deficiency patient manifest-
ing as adult-onset status epilepticus. We found an auto-
somal recessive mutation and identified a compound
heterozygous FARS2 variant, c¢.467C>T (p.T156M),
which is known and has been reported previously,

while ¢.119_120del (p.E40Vfs*87) is a novel variant. The
clinical phenotype of the patient was different from that
reported in the literature. Unfortunately, the patient
was not tested for protein function owing to financial
constraints. Nevertheless, the p.T156M variant repre-
sented as COXPD 14 has been reported; according to
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the HGMD pro database [24] and ACMG guidelines
[27], we considered the complex heterozygous variation
in this patient to be theoretically pathogenic.

The type of COXPD14 was confirmed based on the
main clinical findings combined with the age at onset
because patients can develop identical symptoms at dif-
ferent ages, such as seizures, cognitive delay, decline in
activities of daily living, and increased lactate levels [11].
Our report demonstrates that the age spectrum of epilep-
tic phenotype onset extends to adulthood, except for early
or juvenile onset. We are inclined to define the pheno-
types based on the clinical manifestation rather than the
age of onset, as in Elise Vantroys’ proposal, i.e., (1) epilep-
tic phenotype and (11) spastic paraplegia phenotype [14].

In the previously reported cases, we found that three
patients diagnosed with early onset epileptic encephalopa-
thy were not accompanied by epilepsy, and the phenotype
can still be called early-onset epileptic encephalopathy.
The 3 patients without epilepsy died during the first two
months of life, and no seizures were observed. Early-onset
epileptic encephalopathy is characterized by seizures with
an onset in the first 6 months of life [5-7], so we classified
these 3 patients as having an epileptic phenotype. Interest-
ingly, all three patients were Chinese and carried c.925G > A
(p.G309S), which was found only in Asian populations.
Patients with heterozygous mutations carrying this vari-
ant have a poor prognosis, whereas those with homozygous
mutations have a relatively good prognosis [6].

Barcia et al. [10] reported a case of early-onset enceph-
alopathy without epilepsy presenting with axial hypoto-
nia and developmental delay within 1 month after birth.
At age 8, the patient was unable to walk unassisted and
had spastic paralysis, dystonic movements, and axial
hypotonia. In addition, the EEG was normal, and MRI
showed no cortical atrophy or encephalopathy-like
changes; therefore, we consider that this patient should
be classified as having a spastic paraplegia phenotype
rather than an early-onset encephalopathy phenotype, as
suggested by Giulia Barcia et al. (Patient 34 in Table 2).

The earliest case of COXPD14 was an Arab girl carry-
ing a homozygous c¢.431A > G (p.Y144C) mutation. Since
then, 13 cases of this homozygous mutation have been
reported successively in Arab populations, whereas it has
not been reported in any other Asian populations, indi-
cating significant regional differences in COXPD14 cases.

The epileptic phenotype of COXPD14 is the most
severe, consisting of epileptic encephalopathy and diffuse
cortical dysfunction. Most patients with early-onset epi-
leptic encephalopathy die before the age of age [2, 3, 6].
To date, only three cases of juvenile-onset epilepsy have
been reported [19-21], and the patient with the long-
est survival time was a Chinese patient with novel com-
pound heterozygous mutations (p.V197M and p.F402S)
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who died within 3 years after onset due to respiratory
failure caused by pulmonary infection at the age of 20.
Our patient had normal growth and development before
the age of 27 years. What is even more interesting is that
each seizure she experienced was status epilepticus. Nei-
ther the age of onset nor the epileptic phenotype have
been previously reported.

Most cases of status epilepticus in adults are due to an
underlying structural brain lesion or toxic or metabolic
disturbance [28]. If the underlying medical or structural
cause is of recent origin (<1 to 2 weeks), status epilep-
ticus is referred to as acute symptomatic or “provoked”.
In adults, the most common etiology is acute symptoms,
accounting for approximately half of all cases. In our
patient, the onset of the disease was acute symptomatic
with status epilepticus, without other epilepsy manifesta-
tions, and each time presented with refractory status epi-
lepticus, with clear triggers such as fatigue, mood swings,
and lack of sleep, and the treatment required sedative
drugs and respiratory support. In COXPD14, seizures of
the early-onset epileptic encephalopathy phenotype are
difficult to control and may progress quickly to intracta-
ble seizures with frequent status epilepticus at an early
age [29]. The patient we report here presented solely
with status epilepticus, which is quite rare in COXPD14.
Metabolic epilepsies, including status epilepticus, are
the main neurological manifestations of mitochondrial
diseases such as MELAS, MERFF, or POLG-related dis-
orders [30]. For our patient, considering the dynamic
changes in MRI (Fig. 2), the cortical energy metabolism
disorder should be the underlying cause of status epilep-
ticus with additional specific causes.

Studies have found that mt-aaRS gene mutations are
mostly related to central nervous system diseases that
can be classified into four categories: leukoencephalopa-
thy, early brain disease, infantile fatal neurodegenerative
syndrome, and sensory nerve abnormalities [31]. The
basal ganglia nuclei and white matter of the central nerv-
ous system are more vulnerable, as in COXPD14. How-
ever, previously reported cases have also shown cortical
atrophy, especially in early-onset epileptic encephalopa-
thy, which is usually accompanied by seizures and regres-
sion [5, 6, 10, 11]. In addition to cortical atrophy, MRI of
our patient also showed a thin corpus callosum, which
was previously reported as an early-onset epileptic phe-
notype [4—7]. The thin corpus callosum mostly appeared
in the Asian population (10/12), and no clear correlation
of mutation sites was found, which may be related to eth-
nic differences.

Our patient had no basal ganglia abnormalities but
presented with cortical gyri-like abnormal signals simi-
lar to mitochondrial encephalopathy, and the abnor-
mal signals disappeared on repeated MRI one month
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later, consistent with the characteristics of mitochon-
drial metabolism. However, cerebral perfusion imag-
ing revealed that the original lesion was hypoperfusion,
which is different from the hyperperfusion of mito-
chondrial encephalopathy and may be caused by differ-
ent biochemical mechanisms.

More interestingly, the functional imaging examination
of our patient showed CCD, which refers to a decrease
in blood flow, glucose oxidation metabolism level, and
even crossed cerebellar atrophy in the opposite cerebel-
lar hemisphere when one side of the cerebral hemisphere
is diseased. CCD can appear in patients with status epi-
lepticus, which is mainly related to chronic focal epilepsy
and may be related to additional cross-nerve excitatory
toxicity damage [32-34]; it has not been reported in
patients with FARS2 gene mutations. The initial PET-CT
and MRI of the index patient showed abnormal signals
in the opposite cerebellum of the epileptogenic focus,
considered CCD (Figs. 2 and 3). Repeated MRI and PW1I
showed that the abnormal signals in the cerebellum dis-
appeared and the perfusion was normal, whereas the
perfusion of the probable epileptogenic focus was not
reinstated (Fig. 4), indicating that the CCD might be a
secondary change that could be recovered in a short time
after the initial cause was removed. The same dynamic
changes in CCD in COXPD14 have not been previously
reported. Unfortunately, positron emission tomography-
CT was not performed to confirm these changes.

On the basis of the clinical symptoms and imaging char-
acteristics of this patient, we initially suspected a special
type of mitochondrial encephalopathy, and no abnormal
mutation sites were found after the completion of mito-
chondrial gene testing. Finally, WES identified a muta-
tion in the FARS2 gene and confirmed the diagnosis. Our
study highlights that genetic testing, including WES, plays
an important role in the diagnosis of diseases with multi-
ple phenotypes, especially in the differential diagnosis of
diseases, and can be used as the gold standard in the diag-
nosis of diseases. WES is better than immunohistochemi-
cal assays of muscle biopsy and measurement of lactate,
amino acids, and organic acids in the blood and urine. We
believe that our report verifies and may expand the epi-
leptic phenotype and genotypic spectrum of COXPD14,
providing clinical evidence that may contribute to subse-
quent studies or experiments on COXPD14 in adults.
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