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Abstract

pathogenic variants identified via exome sequencing.

Background SCN8A-related disorders are a group of variable conditions caused by pathogenic variations in SCN8A.
Online Mendelian Inheritance in Man (OMIM) terms them as developmental and epileptic encephalopathy 13, benign
familial infantile seizures 5 or cognitive impairment with or without cerebellar ataxia.

Methods In this study, we describe clinical and genetic results on eight individuals from six families with SCN8A

Results Clinical findings ranged from normal development with well-controlled epilepsy to significant
developmental delay with treatment-resistant epilepsy. Three novel and three reported variants were observed in
SCN8A. Electrophysiological analysis in transfected cells revealed a loss-of-function variant in Patient 4.

Conclusions This work expands the clinical and genotypic spectrum of SCN8A-related disorders and provides
electrophysiological results on a novel loss-of-function SCN8A variant.

Keywords SCN8A, Developmental and Epileptic Encephalopathy, Epilepsy, Seizure, Electrophysiological study, Variant
of Uncertain significance, Exome sequencing, Loss-of-function, Gain-of-function

Background

Pathogenic genomic variations in SCN8A can cause a
spectrum of neurological phenotypes characterized by
developmental delay, early onset multivariate seizure
types, intractable epilepsy, movement disorders and
other neurological manifestations [1-3]. Psychomotor
development varies from normal to abnormal from birth.
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Normal development may precede subsequent delay or
regression following seizure onset. Variable degrees of
intellectual disability is seen with ~50% having a severe
form. Behavioral abnormalities are also seen in some
individuals.

The expression of voltage-gated sodium channels
(NaVs) is key for initiation and conduction of action
potentials in excitable cells such as skeletal muscle and
neurons [4]. Neurons typically express multiple NaV
isoforms. Loss-of-function (LoF) and gain-of-func-
tion (GoF) of voltage-gated sodium channels can lead
to a wide spectrum of phenotypes. SCN8A (NaV1.6;
OMIM 600702) is one of nine human genes encod-
ing voltage-gated sodium channel o-subunits more
recently implicated in epilepsy [5]. SCN8SA variants in
patients with epilepsy primarily result in GoF in Nav1.6
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and hyperexcitability of neurons in the central nervous
system [6]. Evaluation of the phenotype and genotype
spectrum in SCN8A-related disorders suggests that GoF
mutations are associated with severe epileptic encepha-
lopathy, while LoF mutations cause intellectual disabil-
ity with or without seizures. Sodium channel-blocking
agents are effective on different levels in the treatment
of seizures in GoF mutations. Anti-sense oligonucleotide
therapy is in clinical trials for GoF variants and several
treatment modalities are being explored in research
including transfected cell lines and mouse models [7].
Targeted and genome-wide next-generation sequencing
(NGS) has significantly increased the number of families
identified with SCN8A-related disorders, allowing scien-
tists to prioritize functional studies and develop a better
understanding of the phenotypic spectrum [3].

In this case series, we would like to add to the grow-
ing clinical and genetic data of over 500 individuals with
SCN8A-related disorders by reporting 8 affected individ-
uals with variable phenotypes including one family with
a previously published variant associated with treatable
epilepsy, as well as, novel variants in SCN8A identified
by exome sequencing. We establish functional evidence
for a LoF SCN8A variant by using electrophysiological
analyses in a patient with intellectual disability, autism
spectrum disorder, and abnormal EEG. The patient also
presented a co-occurring variant of unknown signifi-
cance in KCNQ3.

Methods

Six families seen at neurology clinic, British Columbia
Children’s Hospital were enrolled in the study. Exome
sequencing was performed on the probands. Informed
consent was obtained for the use of clinical and research
findings for publication. The study has the approval from
Institutional Ethics Committee (protocol number H14-
01531). Clinical and molecular details of patients are
summarized in Table 1. Detailed case description can be
found in the Additional file 1.

Exome sequencing

Exome sequencing was performed in all the families.
Detailed methodology and steps followed for exome
sequencing wet lab and data analysis has been previously
described [8]. Sanger sequencing to validate the variants
and to determine the segregation in the families was per-
formed [9].

Functional validation of SCN8A

The functional consequence of the SCN8A, c.971G>A
(p.Cys324Tyr) variant was examined in vitro by heter-
ologous protein expression in Human Embryonic Kid-
ney cells (HEK-293). The electrophysiological properties
of the HEK-293 cells expressing the p.Cys324Tyr protein
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were compared to control cells expressing either the
wild-type protein or empty expression vector. Functional
studies were not performed for the KCNQ3 variant in
Patient 4.

Results

We studied eight patients from six families (males=3,
females=5) with SCN8A heterozygous mutations. The
phenotype ranged from DEE (n=2), treatment respon-
sive (n=5) and an unclassified epilepsy phenotype, with
possible clinical seizures in Patient 4. The age of seizure
onset ranged from 3 months to 10 years. Individuals with
DEE and an unclassified epilepsy phenotype presented
with profound to severe intellectual disability and severe
global developmental delay. Individuals with treatment
responsive epilepsy were intellectually and developmen-
tally within normal limits. Patient 4 had GDD and autism
as a primary clinical phenotype with an abnormal EEG
and possible clinical seizures. Treatment with valproic
acid had improved EEG characteristics in the past. Four
of them are seizure-free on monotherapy of carbam-
azepine and one with topiramate and clobazam. Exome
sequencing identified three known and three novel het-
erozygous missense variations in SCN8A. Patient 4 also
had a heterozygous, de novo, missense VUS in KCNQ3.
Functionally, we observed a LoF, two GoF and three
unclassified SCN8A variants. Electrophysiological analy-
ses of the SCN8A variant in transfected cells revealed a
LoF effect in Patient 4 (Fig. 1.).

Discussion

SCNB8A variants typically result in a moderate-severe epi-
leptic encephalopathy, and account for 1% of the child-
hood epileptic encephalopathies [1]. The median age of
seizures onset is typically 5 months (range: postnatal day
1 to 18 months of age) with multiple seizure types. The
majority of affected patients have mild to severe global
developmental delay. Abnormal tone, and abnormal
movements may also be present [10]. In our cohort of
eight individuals from six families with SCN8A-related
disorders, we observed an age of onset ranging from 3
months to 10 years with severe to no clinical seizures.
Developmental outcomes varied from profound develop-
mental delay with intellectual disability and behavioural
abnormalities to normal development. Developmental
delay and age of onset of seizures did not seem to have a
correlation in our cohort [11]. The seizure semiology in
SCN8A-related disorders is variable, including focal sei-
zures, tonic-clonic seizures, epileptic spasms, clonic sei-
zures, absence, and myoclonic seizures [10, 12]. Patients
with SCN8A mutations also have a high incidence of Sud-
den Unexpected Death in Epilepsy (SUDEP) [13, 14]. We
noted a seizure course ranging from self-resolving focal
seizures to Lennox-Gastaut syndrome (LGS) manifesting
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human SCN8A transiently
expressed in HEK-293 cells
300, N=236 142 206

250

Current density pA/pF

Fig. 1 A. Simplified diagram of NaV1.6 channel showing the locations of the variants identified in our cohort (novel mutations are in red font). B. HEK-
293 cells were transiently transfected with hNaV1.6 WT, hNaV1.6 C324Y, plasmid vector with no channel construct to look for functional effects of C324Y
variant. C324Y peak current density (pA/pF) levels were significantly different from WT but not from Vector control

impaired awareness seizures, atypical absence seizures,
generalized tonic-clonic seizures, epileptic spasms, and
non-convulsive status epilepticus. The most common sei-
zure type has been focal seizures as observed in the ear-
lier reported patients [15].

The three novel variants are missense substitutions
located on highly conserved transmembrane domains 1
and 2 of NaV1.6 (Fig. 1.). SCN8A gene variants causing
substitution of amino acid residues in the highly con-
served regions are often deleterious [1]. Three variants
(those of Patient 2 [16, 17], Patient 3 [18], and Patient
4 [19]) were described previously. The clinical features
of patient 2, and 3 were similar to what was previously
described. Patient 4’s variant although published did not
have phenotype information available for comparison.
Variants in Patient 5 and Patient 6 have been submitted
to ClinVar [20] without any detailed phenotype descrip-
tions. It is important to note that individual differences
in clinical manifestations can occur even with the same
genetic variation.

LoF variants include an early stop-gain, indel frame-
shift or splice-site disruption resulting in truncated
protein and reduced or abolished NaV1.6 function [21].
Missense changes causing GoF is the most common
pathogenic mechanism for neuronal hyperexcitability
and seizures. LoF is associated with cognitive impair-
ment, movement disorders, and autism with or with-
out seizures [22]. The clinical manifestations of SCN8SA
encephalopathy are likely reliant on the degree of GoF
or LoF [23, 24]. GoF phenotypes include mild to severe
epileptic encephalopathy. There are a few reported cases
of benign or treatment-responsive infantile seizures with
mild gain of function too [25]. We identified two GoF and
a LoF variant with experimental evidence and three vari-
ations with unknown functional consequences. The elec-
trophysiological analyses performed on Patient 4, LoF
SCN8A variant (p.Cys324Tyr), offer valuable insights into
the pathogenesis of SCN8A-related disorders. By charac-
terizing the functional consequences of this variant, we
provide evidence supporting its role in altering neuronal
excitability and ion channel function. This information

could potentially inform the development of targeted
therapeutic strategies aimed at modulating ion chan-
nel activity to alleviate symptoms and improve patient
outcomes.

In terms of the KCNQ3 variant in Patient 4, this vari-
ant was found to be a conserved amino acid and all
in-silico analyses suggest the variant has a deleterious
impact; however, the variant is novel and remains a vari-
ant of uncertain significance. Functional validation has
not been performed. Pathogenic variations in KCNQ3
have been associated with benign or self-limited familial
neonatal and infantile seizures (OMIM 121201) [26, 27].
Individuals are typically normal and grow out of their
seizures, usually without any neurological sequalae in
adulthood. More recently KCNQ3 mutations are identi-
fied in patients with neurodevelopmental disorders and
abnormal EEG [28]. Furthermore, alterations in this gene
have been reported to act as risk factors for complex dis-
eases including other epilepsy types and autism spectrum
disorder. Sands et al. delineated an electroclinical pheno-
type in 11 patients with 4 different heterozygous KCNQ3
GoF variants. Most of them did not have clinical seizures
[28]. Patient 4 had EEG abnormalities with only possible
clinical seizures which could plausibly be due to complex
underlying molecular mechanisms involving KCNQ3 and
SCN8A.

Many early onset neurological diseases are now known
to have a molecular basis. A genetic diagnosis can have
strong implications for prognosis and treatment of epi-
lepsy [29]. Assessments of how often a genetic diagno-
sis has clinically actionable implications vary from 20 to
60% [30, 31]. These comparisons highlight the variability
in clinical presentations, epilepsy diagnoses, and genetic
diagnoses among the patients with SCN8A pathogenic
variations.

Intellectual disability, epilepsy, behavioral abnormali-
ties, and movement disorders belong to a complex set
of conditions with both monogenic and multifactorial
etiologies. Clinical overlap between heterogeneous phe-
notypes, pleiotropy, variable penetrance, and expres-
sivity makes genetic testing a huge challenge in these
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families. We describe a cohort of SCN8A-related disor-
ders in this research work. The results of this study con-
tribute to expanding the clinical and genotypic spectrum
of SCN8A-related disorders. By identifying three novel
variants in SCN8A, we have enhanced our understanding
of the genetic landscape associated with these disorders.
The observed variability in clinical presentation further
emphasizes the complex nature of SCN8A-related disor-
ders and highlights the need for personalized approaches
to diagnosis, treatment, and genetic counseling. The
functional data for p.Cys324Tyr confirms causation in
SCN8A-related disorders.

Conclusions

In conclusion, our study adds to the clinical and geno-
typic spectrum of SCN8A-related disorders by identi-
fying novel variants and characterizing the functional
consequence of p.Cys324Tyr. These findings underscore
the importance of genetic testing in the diagnosis and
management of individuals with SCN8A-related disor-
ders. The mechanistic insights gained from this study
may guide the development of targeted therapeutic inter-
ventions to improve patient care and outcomes in this
heterogeneous group of disorders.

Abbreviations

OMIM Online Mendelian Inheritance in Man
GDD Global developmental delay

LoF Loss-of-Function

GoF Gain-of-Function

VUS Variant of Uncertain Significance

EEG Electroencephalogram

HEK-293  Human Embryonic Kidney cells
SUDEP Sudden Unexpected Death in Epilepsy
LGS Lennox-Gastaut Syndrome

WT Wild-type
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