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Normal development may precede subsequent delay or 
regression following seizure onset. Variable degrees of 
intellectual disability is seen with ~ 50% having a severe 
form. Behavioral abnormalities are also seen in some 
individuals.

The expression of voltage-gated sodium channels 
(NaVs) is key for initiation and conduction of action 
potentials in excitable cells such as skeletal muscle and 
neurons [4]. Neurons typically express multiple NaV 
isoforms. Loss-of-function (LoF) and gain-of-func-
tion (GoF) of voltage-gated sodium channels can lead 
to a wide spectrum of phenotypes. SCN8A (NaV1.6; 
OMIM 600702) is one of nine human genes encod-
ing voltage-gated sodium channel α-subunits more 
recently implicated in epilepsy [5]. SCN8A variants in 
patients with epilepsy primarily result in GoF in Nav1.6 

Background
Pathogenic genomic variations in SCN8A can cause a 
spectrum of neurological phenotypes characterized by 
developmental delay, early onset multivariate seizure 
types, intractable epilepsy, movement disorders and 
other neurological manifestations [1–3]. Psychomotor 
development varies from normal to abnormal from birth. 
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Abstract
Background  SCN8A-related disorders are a group of variable conditions caused by pathogenic variations in SCN8A. 
Online Mendelian Inheritance in Man (OMIM) terms them as developmental and epileptic encephalopathy 13, benign 
familial infantile seizures 5 or cognitive impairment with or without cerebellar ataxia.

Methods  In this study, we describe clinical and genetic results on eight individuals from six families with SCN8A 
pathogenic variants identified via exome sequencing.

Results  Clinical findings ranged from normal development with well-controlled epilepsy to significant 
developmental delay with treatment-resistant epilepsy. Three novel and three reported variants were observed in 
SCN8A. Electrophysiological analysis in transfected cells revealed a loss-of-function variant in Patient 4.

Conclusions  This work expands the clinical and genotypic spectrum of SCN8A-related disorders and provides 
electrophysiological results on a novel loss-of-function SCN8A variant.
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and hyperexcitability of neurons in the central nervous 
system [6]. Evaluation of the phenotype and genotype 
spectrum in SCN8A-related disorders suggests that GoF 
mutations are associated with severe epileptic encepha-
lopathy, while LoF mutations cause intellectual disabil-
ity with or without seizures. Sodium channel-blocking 
agents are effective on different levels in the treatment 
of seizures in GoF mutations. Anti-sense oligonucleotide 
therapy is in clinical trials for GoF variants and several 
treatment modalities are being explored in research 
including transfected cell lines and mouse models [7]. 
Targeted and genome-wide next-generation sequencing 
(NGS) has significantly increased the number of families 
identified with SCN8A-related disorders, allowing scien-
tists to prioritize functional studies and develop a better 
understanding of the phenotypic spectrum [3].

In this case series, we would like to add to the grow-
ing clinical and genetic data of over 500 individuals with 
SCN8A-related disorders by reporting 8 affected individ-
uals with variable phenotypes including one family with 
a previously published variant associated with treatable 
epilepsy, as well as, novel variants in SCN8A identified 
by exome sequencing. We establish functional evidence 
for a LoF SCN8A variant by using electrophysiological 
analyses in a patient with intellectual disability, autism 
spectrum disorder, and abnormal EEG. The patient also 
presented a co-occurring variant of unknown signifi-
cance in KCNQ3.

Methods
Six families seen at neurology clinic, British Columbia 
Children’s Hospital were enrolled in the study. Exome 
sequencing was performed on the probands. Informed 
consent was obtained for the use of clinical and research 
findings for publication. The study has the approval from 
Institutional Ethics Committee (protocol number H14-
01531). Clinical and molecular details of patients are 
summarized in Table 1. Detailed case description can be 
found in the Additional file 1.

Exome sequencing
Exome sequencing was performed in all the families. 
Detailed methodology and steps followed for exome 
sequencing wet lab and data analysis has been previously 
described [8]. Sanger sequencing to validate the variants 
and to determine the segregation in the families was per-
formed [9].

Functional validation of SCN8A
The functional consequence of the SCN8A, c.971G>A 
(p.Cys324Tyr) variant was examined in vitro by heter-
ologous protein expression in Human Embryonic Kid-
ney cells (HEK-293). The electrophysiological properties 
of the HEK-293 cells expressing the p.Cys324Tyr protein 

were compared to control cells expressing either the 
wild-type protein or empty expression vector. Functional 
studies were not performed for the KCNQ3 variant in 
Patient 4.

Results
We studied eight patients from six families (males = 3, 
females = 5) with SCN8A heterozygous mutations. The 
phenotype ranged from DEE (n = 2), treatment respon-
sive (n = 5) and an unclassified epilepsy phenotype, with 
possible clinical seizures in Patient 4. The age of seizure 
onset ranged from 3 months to 10 years. Individuals with 
DEE and an unclassified epilepsy phenotype presented 
with profound to severe intellectual disability and severe 
global developmental delay. Individuals with treatment 
responsive epilepsy were intellectually and developmen-
tally within normal limits. Patient 4 had GDD and autism 
as a primary clinical phenotype with an abnormal EEG 
and possible clinical seizures. Treatment with valproic 
acid had improved EEG characteristics in the past. Four 
of them are seizure-free on monotherapy of carbam-
azepine and one with topiramate and clobazam. Exome 
sequencing identified three known and three novel het-
erozygous missense variations in SCN8A. Patient 4 also 
had a heterozygous, de novo, missense VUS in KCNQ3. 
Functionally, we observed a LoF, two GoF and three 
unclassified SCN8A variants. Electrophysiological analy-
ses of the SCN8A variant in transfected cells revealed a 
LoF effect in Patient 4 (Fig. 1.).

Discussion
SCN8A variants typically result in a moderate-severe epi-
leptic encephalopathy, and account for 1% of the child-
hood epileptic encephalopathies [1]. The median age of 
seizures onset is typically 5 months (range: postnatal day 
1 to 18 months of age) with multiple seizure types. The 
majority of affected patients have mild to severe global 
developmental delay. Abnormal tone, and abnormal 
movements may also be present [10]. In our cohort of 
eight individuals from six families with SCN8A-related 
disorders, we observed an age of onset ranging from 3 
months to 10 years with severe to no clinical seizures. 
Developmental outcomes varied from profound develop-
mental delay with intellectual disability and behavioural 
abnormalities to normal development. Developmental 
delay and age of onset of seizures did not seem to have a 
correlation in our cohort [11]. The seizure semiology in 
SCN8A-related disorders is variable, including focal sei-
zures, tonic-clonic seizures, epileptic spasms, clonic sei-
zures, absence, and myoclonic seizures [10, 12]. Patients 
with SCN8A mutations also have a high incidence of Sud-
den Unexpected Death in Epilepsy (SUDEP) [13, 14]. We 
noted a seizure course ranging from self-resolving focal 
seizures to Lennox-Gastaut syndrome (LGS) manifesting 
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impaired awareness seizures, atypical absence seizures, 
generalized tonic-clonic seizures, epileptic spasms, and 
non-convulsive status epilepticus. The most common sei-
zure type has been focal seizures as observed in the ear-
lier reported patients [15].

The three novel variants are missense substitutions 
located on highly conserved transmembrane domains 1 
and 2 of NaV1.6 (Fig.  1.). SCN8A gene variants causing 
substitution of amino acid residues in the highly con-
served regions are often deleterious [1]. Three variants 
(those of Patient 2 [16, 17], Patient 3 [18], and Patient 
4 [19]) were described previously. The clinical features 
of patient 2, and 3 were similar to what was previously 
described. Patient 4’s variant although published did not 
have phenotype information available for comparison. 
Variants in Patient 5 and Patient 6 have been submitted 
to ClinVar [20] without any detailed phenotype descrip-
tions. It is important to note that individual differences 
in clinical manifestations can occur even with the same 
genetic variation.

LoF variants include an early stop-gain, indel frame-
shift or splice-site disruption resulting in truncated 
protein and reduced or abolished NaV1.6 function [21]. 
Missense changes causing GoF is the most common 
pathogenic mechanism for neuronal hyperexcitability 
and seizures. LoF is associated with cognitive impair-
ment, movement disorders, and autism with or with-
out seizures [22]. The clinical manifestations of SCN8A 
encephalopathy are likely reliant on the degree of GoF 
or LoF [23, 24]. GoF phenotypes include mild to severe 
epileptic encephalopathy. There are a few reported cases 
of benign or treatment-responsive infantile seizures with 
mild gain of function too [25]. We identified two GoF and 
a LoF variant with experimental evidence and three vari-
ations with unknown functional consequences. The elec-
trophysiological analyses performed on Patient 4, LoF 
SCN8A variant (p.Cys324Tyr), offer valuable insights into 
the pathogenesis of SCN8A-related disorders. By charac-
terizing the functional consequences of this variant, we 
provide evidence supporting its role in altering neuronal 
excitability and ion channel function. This information 

could potentially inform the development of targeted 
therapeutic strategies aimed at modulating ion chan-
nel activity to alleviate symptoms and improve patient 
outcomes.

In terms of the KCNQ3 variant in Patient 4, this vari-
ant was found to be a conserved amino acid and all 
in-silico analyses suggest the variant has a deleterious 
impact; however, the variant is novel and remains a vari-
ant of uncertain significance. Functional validation has 
not been performed. Pathogenic variations in KCNQ3 
have been associated with benign or self-limited familial 
neonatal and infantile seizures (OMIM 121201) [26, 27]. 
Individuals are typically normal and grow out of their 
seizures, usually without any neurological sequalae in 
adulthood. More recently KCNQ3 mutations are identi-
fied in patients with neurodevelopmental disorders and 
abnormal EEG [28]. Furthermore, alterations in this gene 
have been reported to act as risk factors for complex dis-
eases including other epilepsy types and autism spectrum 
disorder. Sands et al. delineated an electroclinical pheno-
type in 11 patients with 4 different heterozygous KCNQ3 
GoF variants. Most of them did not have clinical seizures 
[28]. Patient 4 had EEG abnormalities with only possible 
clinical seizures which could plausibly be due to complex 
underlying molecular mechanisms involving KCNQ3 and 
SCN8A.

Many early onset neurological diseases are now known 
to have a molecular basis. A genetic diagnosis can have 
strong implications for prognosis and treatment of epi-
lepsy [29]. Assessments of how often a genetic diagno-
sis has clinically actionable implications vary from 20 to 
60% [30, 31]. These comparisons highlight the variability 
in clinical presentations, epilepsy diagnoses, and genetic 
diagnoses among the patients with SCN8A pathogenic 
variations.

Intellectual disability, epilepsy, behavioral abnormali-
ties, and movement disorders belong to a complex set 
of conditions with both monogenic and multifactorial 
etiologies. Clinical overlap between heterogeneous phe-
notypes, pleiotropy, variable penetrance, and expres-
sivity makes genetic testing a huge challenge in these 

Fig. 1  A. Simplified diagram of NaV1.6 channel showing the locations of the variants identified in our cohort (novel mutations are in red font). B. HEK-
293 cells were transiently transfected with hNaV1.6 WT, hNaV1.6 C324Y, plasmid vector with no channel construct to look for functional effects of C324Y 
variant. C324Y peak current density (pA/pF) levels were significantly different from WT but not from Vector control
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families. We describe a cohort of SCN8A-related disor-
ders in this research work. The results of this study con-
tribute to expanding the clinical and genotypic spectrum 
of SCN8A-related disorders. By identifying three novel 
variants in SCN8A, we have enhanced our understanding 
of the genetic landscape associated with these disorders. 
The observed variability in clinical presentation further 
emphasizes the complex nature of SCN8A-related disor-
ders and highlights the need for personalized approaches 
to diagnosis, treatment, and genetic counseling. The 
functional data for p.Cys324Tyr confirms causation in 
SCN8A-related disorders.

Conclusions
In conclusion, our study adds to the clinical and geno-
typic spectrum of SCN8A-related disorders by identi-
fying novel variants and characterizing the functional 
consequence of p.Cys324Tyr. These findings underscore 
the importance of genetic testing in the diagnosis and 
management of individuals with SCN8A-related disor-
ders. The mechanistic insights gained from this study 
may guide the development of targeted therapeutic inter-
ventions to improve patient care and outcomes in this 
heterogeneous group of disorders.
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