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Abstract
Background  Butane is an aliphatic hydrocarbon used in various commercial products. While numerous 
reports of sudden cardiac-related deaths from butane inhalation have been described, butane-associated acute 
encephalopathy has rarely been reported.

Case presentation  A 38-year-old man presented with cognitive dysfunction after butane gas inhalation. 
Neuropsychological test results showed impairments in verbal and visual memory, and frontal executive function. 
Diffusion weighted MRI revealed symmetric high-signal changes in the bilateral hippocampus and globus pallidus. 
FDG-PET demonstrated decreased glucose metabolism in the bilateral precuneus and occipital areas and the left 
temporal region. At the 8-month follow-up, he showed still significant deficits in memory and frontal functions. 
Diffuse cortical atrophy with white matter hyperintensities and extensive glucose hypometabolism were detected 
on follow-up MRI and FDG-PET, respectively. Brain autopsy demonstrated necrosis and cavitary lesions in the globus 
pallidus.

Conclusions  Only a few cases of butane encephalopathy have been reported to date. Brain lesions associated with 
butane encephalopathy include lesions in the bilateral thalamus, insula, putamen, and cerebellum. To the best of 
our knowledge, this is the first report on bilateral hippocampal and globus pallidal involvement in acute butane 
encephalopathy. The pathophysiology of central nervous system complications induced by butane intoxication is 
not yet fully understood. However, the direct toxic effects of butane or anoxic injury secondary to cardiac arrest or 
respiratory depression have been suggested as possible mechanisms of edematous changes in the brain after butane 
intoxication.
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Background
Butane is an aliphatic hydrocarbon that is commonly 
used as a commercial product or chemical agent (e.g., 
cigarette or charcoal lighter fuel, hair spray, and aero-
sol). Butane inhalation can cause sudden death by cardiac 
arrest following cardiac arrhythmia and vagal stimulation 
[1]. It also causes respiratory depression and hypoxia due 
to oxygen replacement, leading to encephalopathy [2]. 
While there have been several reports of fatal cardiac tox-
icity after butane inhalation [3–6], cases of acute enceph-
alopathy associated with butane intoxication have rarely 
been reported [1, 2, 7, 8]. Furthermore, little is known 
about the serial neuroanatomical and functional changes 
and neuropsychological sequelae related to butane 
encephalopathy. We report a patient who presented with 
cognitive dysfunction after butane inhalation, with serial 
brain magnetic resonance imaging (MRI), [18  F]-fluoro-
2-deoxy-D-glucose positron emission tomography (FDG-
PET), neuropsychological assessment over an 8-month 
period, and autopsy findings.

Case presentation
A 38-year-old man was found in his car with butane-
containing cans for a portable cooking gas stove 6 days 
after disappearance and four days later he was brought 
to the emergency room because of altered mental sta-
tus. On arrival, he was mildly drowsy and disoriented 
to time. He could obey commands; however, his reac-
tion was slow. He showed short-term memory deficits 
and asked the same questions repeatedly. He exhibited 
emotional blunting. His vital signs and oxygen saturation 
were within normal limits. He had isocoric pupils with-
out dilatation. Neurological examination findings were 
unremarkable. Routine laboratory examination results, 
including arterial blood gas analyses, cardiac markers, 
COHb (0.1%), and metHb (0.6%) were all normal. There 
were no abnormalities on the electrocardiogram or echo-
cardiogram. A mini-mental state examination score was 
24 of 30. T2-weighted and fluid-attenuated inversion 
recovery brain MR images showed symmetric high sig-
nal intensities involving the bilateral hippocampus and 
globus pallidus, which were also detected in diffusion-
weighted images (Fig.  1A). The apparent diffusion coef-
ficient values were also high. FDG-PET revealed glucose 
hypometabolism in the bilateral precuneus, occipital, and 
left temporal areas (Fig.  1C, upper row). An electroen-
cephalogram showed intermittent theta to delta slowing. 
On the third day of admission, his mental status recov-
ered from drowsiness to alertness. Detailed neuropsy-
chological test results showed deficits in verbal and visual 
memory and frontal executive function (Table  1). Six 
days after admission, he remained stable without clinical 
aggravation. At the 8-month follow-up neuropsychologi-
cal evaluation, he showed mild improvement compared 

with his initial performance but still significant deficits 
in memory and frontal functions in comparison with 
education-matched, 45-year-old cognitively normal con-
trols (Table 1). However, abnormal behaviors such as irri-
tability, obsession with food, and lethargy became more 
prominent. Follow-up brain MRIs showed diffuse corti-
cal atrophy with white matter hyperintensities (Fig. 1B). 
Follow-up FDG-PET revealed glucose hypometabolism 
more extensively involving the bilateral frontoparieto-
temporal areas (worse on the left) than the previous one 
(Fig. 1C, lower row). Two months after the second evalu-
ation, he died unexpectedly, and a brain autopsy was per-
formed. Grossly, there was no definite cortical atrophy. 
However, necrosis and cavitary lesions in the globus pal-
lidus (Fig. 2A) and atrophy in the hippocampus (Fig. 2B) 
were detected. Microscopically, hematoxylin and eosin 
staining revealed severe gliosis, necrotic changes, and 
neuronal loss in the globus pallidus and hippocampus 
(Fig.  2C and D). Luxol fast blue staining revealed wide-
spread demyelination of the subcortical white mat-
ter (Fig.  3). Immunohistochemical staining for tau, 
β-amyloid, TAR DNA binding protein, and α-synuclein 
revealed no abnormalities in immunoreactivity.

Discussion and conclusions
Butane is a highly lipophilic and volatile substance fre-
quently used as a fuel source for cooking at home and 
camping in Korea. Although fatal cardiac arrhythmia 
due to myocardial sensitization to catecholamine after 
butane intoxication is well documented, little is known 
about the potential mechanism of encephalopathy asso-
ciated butane inhalation [1, 2, 9]. Kile et al. reported a 
16-year-old male with acute butane encephalopathy asso-
ciated with bithalamic lesions. They suggested that bitha-
lamic injury could have been attributed to direct butane 
toxicity (toxic-metabolic encephalopathy) rather than 
anoxic or hypoxic brain injury resulting from asphyxia by 
butane displacing oxygen [7]. Thalamic injury has been 
described in other types of toxic-metabolic encephalopa-
thies (7) but less so than other lesions, such as the glo-
bus pallidus in anoxic or hypoxic encephalopathy (10). 
Previous reports on butane encephalopathy described 
brain MRI findings from normal to various brain lesions, 
including the thalamus, putamen, cerebellum, insula, 
and occipital cortex [1, 2, 7, 11–14]. However, as in our 
case, bilateral hippocampal and globus pallidal lesions 
have not yet been reported. One case of toxic encepha-
lopathy revealed bilateral hippocampal and white mat-
ter damage; however, the toxic substance was propane 
gas, not butane, although both were liquefied petro-
leum gases [6]. The globus pallidus is most commonly 
affected in anoxic–ischemic encephalopathy due to car-
bon monoxide (CO) poisoning because of its high meta-
bolic demands and weak vascular perfusion [10]. The 
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hippocampus may also be involved in CO poisoning, 
as it is the region most vulnerable to hypoxic–ischemic 
injury [15, 16]. Therefore, based on radiological findings, 
we could assume that hypoxic–ischemic encephalopa-
thy developed after exposure to butane. As the patient 

did not have any cardiac problems, hypoxic–ischemic 
events may have resulted from asphyxia after butane 
inhalation. Indeed, it may be doubtful why restricted dif-
fusion along with high ADC values in predilection areas 
was observed in our case. There has been a report that 

Fig. 1  Serial brain magnetic resonance images (MRIs) and [18 F]-fluoro-2-deoxy-D-glucose positron emission tomographies (FDG-PETs). (A) Initial brain 
MRIs obtained 10 days after disappearance. Diffusion-weighted images (DWIs) show symmetric high signal intensities in the bilateral hippocampus and 
globus pallidus (upper row). Fluid-attenuated inversion recovery (FLAIR) images reveal prominent high signal intensities in the same lesions shown on 
DWIs (lower row). (B) Eight-month follow-up FLAIR images show diffuse cortical atrophy with confluent white matter hyperintensities. (C) FDG-PET map-
pings were obtained from the Australian e-Health Research Centre (https://aehrc.csiro.au/). The images were quantified and correlated with 3-D surface 
image using CapAIBL [20, 21] (https://milxcloud.csiro.au/). To quantify the uptake in PET images, focal uptake values are divided by those of the cerebel-
lum (reference region). After quantification, a Z-score map is created on a 3-D surface image. Predominant precuneus hypometabolism in the initial map 
(upper row) progresses extensively to the bilateral frontoparietotemporal areas in the 8-month follow-up images (lower row)

 

https://aehrc.csiro.au/
https://milxcloud.csiro.au/
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transient vasogenic edema can be occurred after acute 
CO exposure [10]. Alternatively, it could be explained 
that the initial low ADC values reflecting cytotoxic 
edema gradually increased (vasogenic edema) during 
the 4 or 10-day interval from the patient’s exposure to 
butane to taking the initial MRI. No previous reports of 
butane encephalopathy have described serial MRI find-
ings. However, diffuse cortical atrophy at the 8-month 
follow-up MRIs in our case corresponded well to those in 
prior studies addressing marked atrophic changes occur-
ring within 6 months of CO exposure, and these changes 
were attributed to neuronal loss and necrosis in the acute 
stage [10, 17]. Furthermore, diffuse white matter changes 
on follow-up MRIs are consistent with those detected in 
delayed posthypoxic encephalopathy, which is evidence 
of extensive demyelination [18]. The radiological findings 
after representative toxic encephalopathy or hypoxic-
ischemic injury are summarized in Table 2.

Regarding FDG-PET findings, initially predominant 
glucose hypometabolism in the precuneus progressed 
to extensive frontoparietotemporal hypometabolism at 
the 8-month follow-up. Interestingly, the initial finding 
of selective precuneus hypometabolism partially corre-
sponds with previous research demonstrating reduced 

functional connectivity between the hippocampus and 
precuneus in the early stage of Alzheimer’s disease with 
hippocampal atrophy and structurally unaffected precu-
neus [19]. Therefore, selective impaired memory in the 
first neuropsychological test in our case was generally 
consistent with the initial brain injury pattern. However, 
his performance remained generally unchanged dur-
ing the follow-up test and was not correlated with the 
widely distributed glucose hypometabolism attributed to 
diffuse cortical atrophy with white matter hyperintensi-
ties on follow-up images. Only one previous report has 
described cognitive performance in detail after butane 
inhalation. Woods et al. reported a 14-year-old girl with 
severe verbal and nonverbal declarative memory impair-
ment with normal brain MRI findings after successful 
resuscitation following ventricular fibrillation arrest [13]. 

Table 1  Results of the neuropsychological tests
Neuropsychological test Results

1st 2nd
Digit span: forward/backward 6/3 8/5

Letter cancellation, vigilance test NL NL

Fluency Fluent Fluent

Comprehension/repetition/reading/
writing

NL/NL/NL/NL NL/NL/NL/NL

K-BNT 51/60 49/60*

Calculation 11/12 11/12

Finger naming/R.-L. orientation/body 
part identification/praxis

NL/NL/NL/NL NL/NL/NL/NL

Interlocking pentagon NL NL

Rey Complex Figure Test copy 36/36 33/36

SVLT free recall/delayed recall 8(2 + 3 + 3)*/0* 13(5 + 3 + 5)*/4*

RCFT immediate recall, 20-min 
delayed recall

0/36*, 0/36* 3/36*, 0/36*

Semantic word fluency: animals/
supermarket items

4/6* 6/5*

Phonemic word fluency: ㄱ/ㅅ/ㅇ 3/1/4* 5/4/5*

Stroop test: word/color 112/45* 112/78*

Trail making test: part A/part B 17s/30s 12s/25s

Digit symbol coding 46* 57*

MMSE 18/30 23/30

CGA-NPI 16/144 37/144

FBI 26/72 39/72
CGA-NPI, Caregiver-Administered Neuropsychiatric Inventory; FBI, Frontal 
Behavioral Inventory; K-BNT, Korean version of the Boston Naming Test; MMSE, 
Mini-Mental State Examination; L, Left; RCFT, Rey Complex Figure Test; R, Right; 
s, seconds; SVLT, Seoul Verbal Learning Test; NL, within normal limit; *, lower 
to 1 standard deviation of education-matched, 45-year-old cognitively normal 
controls.

Fig. 2  Formalin-fixed coronal sections show necrotic changes in the 
globus pallidus (A, arrows) and atrophic hippocampus (B, arrows). Hema-
toxylin and eosin staining reveals necrotic changes in the corresponding 
lesions of A (C, arrows) and B (D, arrows) (scale bar = 250 μm, GPe, glo-
bus pallidus externa; GPi, globus pallidus interna; IC, internal capsule; P, 
putamen)
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Table 2  Comparison of radiological findings between representative toxic and hypoxic-ischemic encephalopathies
Toxic encephalopathy Acute hypoxic-ischemic encephalopathy Delayed 

hypoxic-ischemic
encephalopathy

Etiology Drugs of abuse
(e.g. Butane, Heroin)

Cardiac arrest
Acute respiratory insufficiency
Other toxic causes (e.g., CO)

Cardiorespiratory 
compromise
Other toxic causes

MRI 
findings

- High FLAIR or T2 signal intensities in the thalamus, basal 
ganglia, cerebellum, or insula (Butane intoxication)
- High signal changes in the putamen, and occipital and 
frontal lobes in DWI (Butane intoxication)
- Symmetrically increased T2 and FLAIR signal intensity 
of the cerebellar and posterior cerebral white matter, 
posterior limb of the internal capsule with sparing of the 
anterior limb of the internal capsule and dentate nuclei 
(Heroin inhalation)

- Diffuse cortical injury on DWI
- Border zone distribution of ischemia
- Increased T2 and FLAIR signal intensity in the globus 
pallidus along with corresponding diffusion restriction
- Much less commonly increased T2 and FLAIR signal 
intensity in the caudate, putamen, thalamus, hip-
pocampus, cerebellum, and brain stem than that in the 
globus pallidus

- High T2-FLAIR 
signal intensity in 
the periventricular 
white matter 
and centrum 
semiovale sparing 
the cerebellum 
and the brainstem 
tracts

Reference [2, 7, 11, 22] [10, 23] [24]
MRI, magnetic resonance imaging; FLAIR, Fluid-attenuated inversion recovery; DWI, Diffusion weighted image; CO, Carbon Monoxide

Fig. 3  Luxol Fast Blue staining shows diffusely demyelinated frontal white matter of the patient (A) in comparison with relatively normal appearing white 
matter from 77-year-old cognitively unimpaired patient (B), which corresponds with white matter hyperintensity seen in eight-month follow up FLAIR 
images
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In contrast to our case, the patient’s cognitive function 
showed improvement or returned to normal at 3-month 
follow-up [12].

Lastly, autopsy results showing necrosis of the globus 
pallidus and extensive white matter demyelination con-
firmed those findings on brain MRIs.

Our case is of particularly interest because, to the 
best of our knowledge, this is the first report describ-
ing serial structural and functional images with autopsy 
findings associated with butane encephalopathy. How-
ever, it should also be noted that these neuroimaging 
and pathological findings may not be specific for butane 
encephalopathy but may be present in any patient with 
hypoxic–ischemic encephalopathy, regardless of any etio-
logical volatile substance.
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