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Abstract
Background  Continuous glucose monitoring (CGM)-derived time in range (TIR) is closely associated with micro- 
and macrovascular complications in type 2 diabetes mellitus (T2DM). This study was performed to investigate the 
relationship between key CGM-derived metrics and specific cognitive domains in patients with T2DM.

Methods  Outpatients with T2DM who were otherwise healthy were recruited for this study. A battery of 
neuropsychological tests was performed to evaluate cognitive function, including memory, executive functioning, 
visuospatial ability, attention, and language. Participants wore a blinded flash continuous glucose monitoring (FGM) 
system for 72 h. The key FGM-derived metrics were calculated, including TIR, time below range (TBR), time above 
range (TAR), glucose coefficient of variation (CV), and mean amplitude of glycemic excursions (MAGE). Furthermore, 
the glycemia risk index (GRI) was also calculated by the GRI formula. Binary logistic regression was used to assess risk 
factors for TBR, and we further analysed the associations between neuropsychological test results and key FGM-
derived metrics with multiple linear regressions.

Results  A total of 96 outpatients with T2DM were recruited for this study, with 45.8% experiencing hypoglycemia 
(TBR< 3.9 mmol/L). Spearman analysis results revealed that a higher TBR< 3.9 mmol/L was correlated with worse performance 
on the Trail Making Test A (TMTA), Clock Drawing Test (CDT), and cued recall scores (P < 0.05). Logistic regression 
analysis results indicated that the TMTA (OR = 1.010, P = 0.036) and CDT (OR = 0.429, P = 0.016) scores were significant 
factors influencing the occurrence of TBR< 3.9 mmol/L. Multiple linear regressions further demonstrated that TBR< 3.9 mmol/L 
(β = -0.214, P = 0.033), TAR> 13.9 mmol/L (β = -0.216, P = 0.030) and TAR10.1–13.9 mmol/L (β = 0.206, P = 0.042) were significantly 
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Background
According to the International Diabetes Federation 2021 
report, the number of people affected with diabetes 
worldwide is 536.6  million, which is estimated to reach 
783.2 million in 2045 [1]. Over 90% of people with dia-
betes have type 2 diabetes mellitus (T2DM) [2, 3]. Peo-
ple with T2DM are at risk of life-threatening acute and 
chronic complications, especially central nervous sys-
tem damage, which can cause functional and structural 
changes in the brain that lead to cognitive impairment 
and behavioral deficits [4]. Chronic hyperglycemia, recur-
rent hypoglycemic episodes, and glycemic excursions 
have been implicated as potential causative factors of 
cognitive impairment [5–7]. Therefore, continuous glu-
cose monitoring (CGM) has evolved as an essential part 
of diabetes management for diabetic patients with cogni-
tive impairment. With the development of CGM technol-
ogy, flash continuous glucose monitoring (FGM) systems 
have increased in popularity in recent years because of 
the highly detailed information and enhanced accuracy 
they provide. The key FGM-derived metrics enable quan-
titative evaluation of the quality of short-term glycemic 
control, including time in range (TIR), time below range 
(TBR), time above range (TAR), glucose coefficient of 
variation (CV), and mean amplitude of glycemic excur-
sions (MAGE) [8]. However, as a single metric, TIR does 
not indicate whether the out-of-range readings are too 
low or too high; therefore, several researchers have pro-
posed a new evaluation index of blood glucose the gly-
cemia risk index (GRI) [9]. The GRI is based on weighted 
combinations of TBR (the hypoglycemia component) 
and TAR (the hyperglycemia component) [9]. As such, 
we believe that key FGM-derived metrics and GRI could 
provide more direct, comprehensive, and complete infor-
mation on blood glucose levels.

Human cognitive function is a complex construct 
composed of seven key cognitive domains: learning 
and memory, visuospatial ability, executive function-
ing, language, complex attention, perceptual-motor 
function, and social cognition [10]. Cognitive impair-
ment refers to the impairment of one or more of these 
cognitive domains [10]. Recently, it was shown that glu-
cose variability is associated with disruption of execu-
tive functioning, attention and language ability [11]. 

Glucose variability increases the production of reactive 
oxygen species (ROS) [12]. Overproduction of ROS can 
cause oxidative stress, which leads to neuronal dam-
age and apoptosis [13]. Thus, glucose variability induces 
the activation of oxidative stress, which may be a major 
contributor to the development of cognitive impair-
ment [12–14]. Previous studies have shown that TIR, 
TBR, MAGE, and severe hypoglycemia are associated 
with cognitive impairment [11, 14–17]. However, there 
is a lack of understanding regarding the specific relation-
ships between TBR/TAR/TIR/GRI and different cogni-
tive domains in patients with T2DM. In this study, we 
conducted a cross-sectional analysis to explore the rela-
tionship between key FGM-derived metrics and specific 
cognitive domains in patients with T2DM to prevent the 
occurrence and development of cognitive impairment.

Research design and methods
Participants
Outpatients with T2DM who were otherwise healthy 
were recruited from the First Hospital of Hebei Medi-
cal University. This study recruited outpatients who met 
the following inclusion criteria: (1) age between 40 and 
80 years old; (2) patients with T2DM who met the 1999 
World Health Organization (WHO) diagnostic crite-
ria for diabetes mellitus [18] and had been on a stable 
glucose-lowering regimen for the past 3 months. The 
exclusion criteria included (1) diabetic ketoacidosis, 
hyperglycemic-hyperosmolar state or severe hypogly-
cemia and recurrent episodes of hypoglycemia within 
the past 3 months, thyropathy, parathyropathy or other 
endocrinopathies; (2) major medical illness, such as 
severe anemia, serious heart disease, liver, and kidney 
dysfunction or other systemic diseases; (3) acute infec-
tion; (4) malignant tumors and autoimmune diseases; (5) 
severe neurological or psychiatric diseases, alcoholism or 
abuse of psychotropic medicines; and (6) large infarcts, 
infection, tumor, or multifocal gray matter and/or white 
matter lesions observed on magnetic resonance imaging 
(MRI).

Clinical and biochemical measurements
Patient information on age, sex, diabetes duration, 
education, and prescription medications, such as 

correlated with cued recall scores after adjusting for confounding factors. However, TIR, GRI, CV and MAGE showed no 
significant correlation with the results of neuropsychological tests (P > 0.05).

Conclusions  A higher TBR< 3.9 mmol/L and TAR> 13.9 mmol/L were associated with worse cognitive functions (memory, 
visuospatial ability, and executive functioning). Conversely, a higher TAR of 10.1–13.9 mmol/L was associated with 
better memory performance in memory tasks.
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glucose-lowering drugs, was collected by doctors. Each 
patient underwent a physical examination that included 
measurements of height, weight, and blood pressure. 
Blood samples were drawn by an experienced nurse 
after a 10-h overnight fast. Total cholesterol, triglycer-
ides, high-density lipoprotein (HDL), and low-density 
lipoprotein (LDL) were determined by applying stan-
dard enzymatic methods using a biochemical analyzer 
(US Beckman AU5800 automatic chemistry analyzer, 
Beckman Coulter, America). Fasting plasma glucose 
(FPG) levels were assayed by using the glucose hexoki-
nase method. Hemoglobin A1c (HbA1c) was measured 
by using high-performance liquid chromatography with 
a Hemoglobin A1c analyzer (Afinion 2 HbA1c, Abbott 
Diagnostics Technologies AS, Norway).

Neuropsychological assessment
Several neuropsychological tests, including the Mini-
Mental State Examination (MMSE) [19], Montreal Cog-
nitive Assessment (MoCA) [20], Digit Span Test forward 
(DST forward) and backward (DST backward) [21], Trail 
Making Test A and B (TMTA and TMTB) [22], Boston 
Naming Test (BNT) [23], self-assessment of depression 
[24], Clock Drawing Test (CDT) [25, 26], Verbal Flu-
ency Test (VFT) [27] and Auditory Verbal Learning Test 
(AVLT) [28], were performed to evaluate cognitive func-
tion, such as memory, executive functioning, visuospa-
tial ability, attention and language. The AVLT included 
immediate memory total scores and scores on 20-min 
delayed recall, cued recall, and long-delayed recognition.

FGM parameters
Each patient wore a blinded FGM system (FreeStyle Libre 
H; Abbott Diabetes Care, Witney, UK) for 72 h [29, 30]. 
The glucose data were automatically recorded and saved 
every 15 min, and finger blood correction was exempted. 
The sensor of the FGM system was inserted on Day 0. 
After 72 h of monitoring, the data were downloaded to a 
computer and analysed. Key FGM-derived metrics were 
calculated. These metrics included the following: (1) TIR: 
% of readings and time in the range of 3.9–10.0 mmol/L. 
(2) TBR: % of readings and time at < 3.9 mmol/L (TBR< 3.9 

mmol/L). According to the value of TBR< 3.9 mmol/L, the par-
ticipants were divided into two groups based on absence 
or presence of hypoglycemia (with or without hypoglyce-
mia). Furthermore, the TBR values were classified as level 
1 hypoglycemia (% of readings and time in the range of 
3.0-3.8 mmol/L (TBR3.0–3.8 mmol/L)) and level 2 hypogly-
cemia (% of readings and time at < 3.0 mmol/L (TBR< 3.0 

mmol/L)). Nocturnal asymptomatic hypoglycemia (NAH) 
was defined as T2DM patients with glucose levels < 3.9 
mmol/L without the typical symptoms of hypoglyce-
mia occurring between 0:00 am and 6:00 am [29]. (3) 
TAR: % of readings and time at > 10.0 mmol/L. The TAR 

values were further classified as level 1 hyperglycemia (% 
of readings and time in the range of 10.1–13.9 mmol/L 
(TAR10.1–13.9 mmol/L)) and level 2 hyperglycemia (% of 
readings and time at > 13.9 mmol/L (TAR> 13.9 mmol/L)) [8]. 
(4) CV and MAGE. GRI was calculated through the GRI 
formula. ‘.

Statistical analysis
Statistical analyses were carried out with the IBM SPSS 
25.0 software package (IBM Corp., Armonk, N.Y., USA). 
Continuous variables with a normal distribution are 
presented as the mean ± SD, and those not conforming 
to a normal distribution are expressed as the interquar-
tile range [M (QL, QU)]. For continuous variables with 
normal or skewed distributions, Student’s t test, one-
way ANOVA or the Mann‒Whitney U test were used 
for comparisons between groups. The χ2-test was used 
for categorical variables. Spearman analysis was used to 
analyse the relationships between glucose metrics and 
neuropsychological test results. Binary logistic regression 
was used to analyse the associations between TBR and 
neuropsychological test results. Multilinear regression 
analysis was used to analyse the correlations between 
neuropsychological test results and FPG, key FGM-
derived metrics and GRI.

Results
Characteristics of the study participants
A total of 96 outpatients with T2DM were recruited 
for this study. Participant characteristics are shown in 
Table 1. The mean age of the 96 patients was 61.40 ± 7.84 
years, 59.38% (n = 57) of the patients were male and 
40.62% (n = 39) were female, the duration of diabetes was 
13.05 ± 7.81 years, HbA1c was 7.85% (7.20%, 8.70%), and 
CV% was 26.50% (23.65%, 33.00%). A total of 45.8% of 
patients with T2DM had hypoglycemia (TBR< 3.9 mmol/L). 
Among them, 23 patients (23.96%) had NAH. There were 
no significant differences in sex, age, duration of dis-
ease, education, blood pressure, BMI or blood lipid lev-
els between the groups with and without hypoglycemia 
(P > 0.05). Compared with T2DM patients without hypo-
glycemia, T2DM patients with hypoglycemia showed 
increased TIR and CV values (P < 0.01) and lower HbA1c, 
FPG, TAR10.1–13.9 mmol/L, TAR> 13.9 mmol/L, and mean glu-
cose (MG) values (all P < 0.01). T2DM patients with 
hypoglycemia exhibited significantly worse performance 
on the TMTA and CDT (all P < 0.05) (Table 2). Moreover, 
compared with T2DM patients without hypoglycemia, 
T2DM patients with level 1 hypoglycemia (TBR3.0–3.8 

mmol/L) exhibited significantly worse performance on the 
TMTA and CDT (all P < 0.05), as shown in Supplemen-
tary Table S1.
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Associations between TBR< 3.9 mmol/L and 
neuropsychological test results
The correlation analysis of TBR< 3.9 mmol/L with neuropsy-
chological test results was performed with Spearman’s 
analysis. TBR< 3.9 mmol/L was positively correlated with 
TMTA scores (P < 0.01) and negatively correlated with 
cued recall and CDT scores (P < 0.05) (Fig.  1). Binary 
logistic regression analysis was carried out to further 
analyse the association between TBR and neuropsycho-
logical test results. The binary dependent variables were 
TBR< 3.9 mmol/L (T2DM patients with glucose levels < 3.9 
mmol/L were coded as 1, and T2DM patients without 
glucose levels < 3.9 mmol/L were coded as 0), and the 
independent variables included age, duration of disease, 
education, BMI, and neuropsychological test results 

(scores on MMSE, MoCA, CDT, TMTA and cued recall). 
The results revealed that TMTA (OR = 1.010, P = 0.036) 
and CDT (OR = 0.429, P = 0.016) scores were indepen-
dent influencing factors for the occurrence of TBR< 3.9 

mmol/L (Fig. 2). After adjusting for age, sex, diabetes dura-
tion, education, and BMI, significant associations existed 
between CDT scores (OR = 0.379, P = 0.008) and TBR< 3.9 

mmol/L. There was still a significant correlation after fur-
ther adjustment for scores on the TMTA (P < 0.05) 
(Table 3).

Table 1  Characteristics of study participants
Variable Total

(n = 96)
Without 
hypoglycemia
(n = 52)

With 
hypoglycemia
(n = 44)

P 
values

Male, n (%) 57 (59.38) 27 (51.92) 30 (68.18) 0.106

Age (years) 61.40 ± 7.84 61.06 ± 8.57 61.80 ± 6.96 0.648

Education: junior college degree or above, n (%) 41 (42.71) 20 (38.46) 21 (47.73) 0.087

Diabetes duration (years) 13.05 ± 7.81 13.00 ± 7.69 13.11 ± 8.03 0.944

SBP (mmHg) 133.89 ± 13.88 133.88 ± 14.37 133.89 ± 13.44 1.000

DBP (mmHg) 80.68 ± 9.07 81.15 ± 8.61 80.11 ± 9.66 0.578

BMI (kg/m2) 26.11 ± 3.91 26.64 ± 4.15 25.48 ± 3.56 0.150

Total cholesterol (mmol/L) 4.84 ± 1.09 4.90 ± 1.12 4.76 ± 1.06 0.510

Triglycerides (mmol/L) 1.39 (0.98, 2.19) 1.68 (0.93, 2.46) 1.31 (1.01, 1.85) 0.184

HDL (mmol/L) 1.18 (1.03, 1.39) 1.19 (1.04, 1.40) 1.16 (1.01, 1.32) 0.476

LDL (mmol/L) 3.00 ± 0.79 3.03 ± 0.76 2.97 ± 0.83 0.753

HbA1c (%) 7.85 (7.20, 8.70) 8.15 (7.43, 9.08) 7.45 (6.70, 8.18) < 0.001

FPG (mmol/L) 8.50 (7.13, 10.47) 8.83 (7.69, 11.58) 7.91 (6.21, 9.44) 0.005

TIR (%) 61.66 ± 27.76 52.34 ± 31.25 72.68 ± 17.73 < 0.001

TAR10.1–13.9 mmol/L (%) 20.50 (11.26, 
33.27)

29.30 (16.75, 
41.75)

16.08 (6.00, 
21.05)

< 0.001

TAR> 13.9 mmol/L (%) 2.91 (0.00, 18.00) 8.60 (0.09, 28.86) 1.05 (0.00, 6.81) 0.002

SD (mmol/L) 2.60 ± 0.84 2.59 ± 0.73 2.61 ± 0.96 0.883

GRI 34.32 (20.00, 
64.60)

39.75 (18.18, 
83.30)

29.38(20.98, 
47.03)

0.158

MG (mmol/L) 9.27 ± 2.76 10.50 ± 2.88 7.81 ± 1.71 < 0.001

CV (%) 26.50 (23.65, 
33.00)

24.77 (21.61, 
27.02)

32.15 (26.85, 
37.50)

< 0.001

MAGE (mmol/L) 5.66 (4.21, 7.00) 5.80 (4.36, 6.81) 5.24 (3.98, 7.66) 0.903

Use antidiabetes agents
Insulin, n (%) 47 (48.96) 27 (51.92) 20 (45.45) 0.528

Sulfonylurea, n (%) 19 (19.79) 11 (21.15) 8 (18.18) 0.716

Biguanides, n (%) 67 (69.79) 38 (73.08) 29 (65.91) 0.446

α-glucosidase inhibitors, n (%) 51 (53.13) 27 (51.92) 24 (54.55) 0.798

Dipeptidyl peptidase 4 inhibitors, n (%) 10 (10.42) 6 (11.54) 4 (9.09) 0.696

Glucagon-like peptide 1 receptor agonists, n (%) 10 (10.42) 4 (7.69) 6 (13.64) 0.342

Sodium–glucose cotransporter 2 inhibitors, n (%) 5 (5.21) 3 (5.77) 2 (4.55) 0.788
Data are presented as means ± standard deviations or medians (interquartile ranges) for continuous variables, and numbers (percentages) for categorical variables. 
A two-tailed value of P < 0.05 was considered as statistically significant.

SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein; HbA1c, hemoglobin 
A1c; FPG, fasting plasma glucose; TIR, time in range; TAR, time above range; SD, standard deviation; GRI, glycemia risk index; MG, mean glucose; CV, coefficient of 
variation; MAGE, mean amplitude of glycemic excursions
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Associations between FPG and neuropsychological test 
results
FPG was negatively correlated with scores on DST for-
ward, BNT, delayed recall, and cued recall (P < 0.01 or 
P < 0.05) (Fig. 3).

Associations between cued recall scores and key FGM-
derived metrics
After adjusting for age, sex, diabetes duration, education, 
and BMI, FPG (β = -0.307, P = 0.003), TBR< 3.9 mmol/L (β = 
-0.214, P = 0.033), TAR> 13.9 mmol/L (β = -0.216, P = 0.030) 
and TAR10.1–13.9 mmol/L (β = 0.206, P = 0.042) were signifi-
cantly correlated with cued recall scores, and there was 
still a significant correlation after adjustment for depres-
sion scale scores (P < 0.05). After adjusting for FPG, the 
correlation of TAR> 13.9 mmol/L (β = -0.031, P = 0.818) dis-
appeared, but TBR< 3.9 mmol/L (β = -0.327, P = 0.001) and 
TAR10.1–13.9 mmol/L (β = 0.343, P = 0.001) were even more 
significantly correlated with cued recall scores (Table 4).

Associations between TIR/GRI/CV/MAGE and 
neuropsychological test results
Multiple linear regression was used to investigate the 
associations between TIR/GRI/CV/MAGE and neu-
ropsychological test results, and the results revealed 
that TIR, GRI, CV and MAGE had no correlation with 

neuropsychological test results (P > 0.05) (Supplementary 
Table S2).

All of the participants were stratified according to ter-
tiles of TIR (TIR < 57%; 57% ≤ TIR < 79%; TIR ≥ 79%). In 
patients with the same incidence of TBR< 3.9 mmol/L, com-
pared with T2DM patients with 57% ≤ TIR < 79%, T2DM 
patients with TIR ≥ 79% exhibited significantly better per-
formance on the BNT (P = 0.020), and there was no dif-
ference in other neuropsychological test results (P > 0.05) 
(Supplementary Table S3).

Discussion
The present study demonstrated that a higher TBR< 3.9 

mmol/L was associated with worse cognitive performance, 
especially with memory, visuospatial ability and execu-
tive functioning. A higher TAR> 13.9 mmol/L was associated 
with worse memory performance. Conversely, a higher 
TAR10.1–13.9 mmol/L was associated with better memory 
performance in outpatients with T2DM.

Previous studies have indicated that both severe hypo-
glycemia and recurrent episodes of hypoglycemia were 
related to cognitive impairment in patients with T2DM 
[31, 32]. In another study, it was demonstrated that TBR 
was negatively correlated with MoCA scores [15]. How-
ever, our study found no correlation between TBR< 3.9 

mmol/L and MoCA scores. This disparity in results may be 
due to differences in the study population, as the patients 
in our study were relatively younger (mean age: 61.40 
years) than those in the previous study (mean age: 70.35 
years) [15]. Several studies reported that diabetes-asso-
ciated cognitive impairment could occur in adolescents 
and young adults with T2DM [33, 34], while other stud-
ies are inconsistent with this view [35].

Our study revealed that a higher TBR< 3.9 mmol/L was 
correlated with worse performance on TMTA, CDT 
and cued recall. Therefore, TBR< 3.9 mmol/L was found to 
be associated with cognitive impairment, particularly 
memory dysfunction, deficits in visuospatial ability, and 
impaired executive functioning in younger patients with 
T2DM, which is consistent with previous studies [17].

In addition, FGM provided an improved opportu-
nity to capture NAH events, and we found that 23.96% 
of patients with T2DM experienced NAH. NAH was 
associated with neurological damage, which was consis-
tent with previous studies [36]. The occurrence of NAH 
in patients might be related to disorders of rapid eye 
movement (REM) sleep phases and the suppression of 
counterregulatory hormone responses to hypoglycemia 
during REM sleep [37].

Furthermore, we conducted a comparison of TMTA 
and CDT performance between T2DM patients with 
level 1 hypoglycemia (TBR3.0–3.8 mmol/L) and T2DM 
patients without hypoglycemia. Our findings revealed 
that T2DM patients with level 1 hypoglycemia (TBR3.0–3.8 

Table 2  Neuropsychological test information in all patients
Variable Without 

hypoglycemia
(n = 52)

With 
hypoglycemia
(n = 44)

P 
values

MMSE 28.00 (27.00, 29.00) 28.00 (26.00, 29.00) 0.418

MoCA 23.37 ± 2.69 22.70 ± 3.35 0.286

Immediate memory 
total scores

23.81 ± 5.07 22.34 ± 5.16 0.165

20-min delayed 
recall

8.33 ± 2.20 7.64 ± 3.09 0.206

Cued recall 10.50 (9.00, 11.75) 10.00 (8.00, 11.00) 0.118

Long delayed 
recognition

12.00 (11.00, 13.75) 12.00 (10.00, 14.00) 0.965

DST forward 7.00 (6.00, 8.00) 6.00 (6.00, 8.00) 0.114

DST backward 4.00 (4.00, 5.00) 4.00 (3.00, 5.00) 0.503

TMTA 38.43 (32.43, 60.25) 62.79 (38.16, 
150.00)

0.010

TMTB 88.00 (57.93, 
300.00)

300.00 (72.37, 
300.00)

0.053

BNT 23.50 (22.00, 27.00) 24.00 (21.00, 26.00) 0.799

CDT 3.00 (2.00, 3.00) 2.00 (1.25, 3.00) 0.028

VFT 18.00 (15.00, 20.00) 17.00 (14.00, 21.00) 0.507

Depression scale 51.88 (47.50, 57.50) 52.50 (47.50, 56.25) 0.997

Negative emotion 86.50 (76.00, 95.00) 87.50 (76.75, 92.75) 0.953
Data are presented as means ± standard deviations or medians (interquartile 
ranges) for continuous variables. A two-tailed value of P < 0.05 was considered 
as statistically significant.

MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; 
DST, Digit Span Test; TMT, Trail Making Test; BNT, Boston Naming Test; CDT, 
Clock Drawing Test; VFT, Verbal Fluency Test
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mmol/L) exhibited significantly worse performance on 
the TMTA and CDT, which indicates that nonsevere 
hypoglycemia is associated with cognitive impairment, 
specifically deficits in visuospatial ability and impaired 
executive functioning. However, we did not observe any 
significant association between TBR< 3.9 mmol/L and cogni-
tive performance in the global cognition, language, and 
attention domains.

Previous studies have demonstrated a bidirectional 
association between severe hypoglycemia and cognitive 
impairment in individuals with T2DM. Severe hypogly-
cemia can contribute to a decline in cognitive function, 
and cognitive impairment may increase the risk of severe 
hypoglycemia [38]. Our findings were consistent with 
numerous studies on T2DM, indicating that TBR< 3.9 

mmol/L was associated with disruption in memory, execu-
tive functioning, and visuospatial ability. Furthermore, we 
found that deficits in executive functioning and visuospa-
tial ability may lead to the occurrence of TBR< 3.9 mmol/L, 
and the impairment of visuospatial ability was a more 
important factor for the occurrence of TBR< 3.9 mmol/L. 
Therefore, our study has shown a bidirectional associa-
tion between TBR< 3.9 mmol/L and cognitive impairment.

Hypoglycemic episodes can have detrimental effects on 
the brain, including neuronal death in the hippocampus 
and cerebral cortex, as well as increased consumption of 
alternate respiratory substrates, such as ketone bodies, 
glycogen and monocarboxylate, in the brain, leading to 
mitochondrial dysfunction and brain function damage 
[39, 40]. Moreover, patients with cognitive impairment 

Fig. 1  Correlation of TBR< 3.9 mmol/L and neuropsychological test results. A, Correlation between TBR< 3.9 mmol/L and TMTA scores. B, Correlation between 
TBR< 3.9 mmol/L and cued recall scores. C, Correlation between TBR< 3.9 mmol/L and CDT scores. D, Correlation between TBR< 3.9 mmol/L and BNT scores. TMTA, 
Trail Making Test A; BNT, Boston Naming Test; CDT, Clock Drawing Test; TBR, time below range
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may have a decreased ability to sense hypoglycemia, 
resulting in repeated episodes of hypoglycemia. In addi-
tion, patients with cognitive dysfunction may have a 
higher risk of hypoglycemia due to reduced capacity for 
self-care and the potential for overdose of glucose-lower-
ing medications. This bidirectional association highlights 
the importance of managing hypoglycemia in patients 
with T2DM to prevent further cognitive decline.

In our study, we also investigated the association 
between hyperglycemia and cognitive performance using 
TAR and FPG as metrics of hyperglycemia. Previous 

studies have consistently shown a strong correlation 
between hyperglycemia and cognitive impairment [16, 
41]. Our findings revealed that a higher TAR10.1–13.9 

mmol/L was associated with better memory performance. 
Even after adjusting for various confounding factors, 
TAR10.1–13.9 mmol/L remained one of the main factors 
affecting memory. Therefore, we speculate that maintain-
ing blood glucose levels within the range of 10.1–13.9 
mmol/L may potentially slow the decline in memory and 
impede the occurrence and development of cognitive 
impairment. Notably, our study is the first to reveal that 
a higher TAR10.1–13.9 mmol/L was associated with better 
cognitive function. Therefore, we recommended that gly-
cemic control target values should be relaxed for T2DM 
patients with cognitive impairment.

However, it is important to note that another study 
demonstrated that a higher TAR> 10.0 mmol/L was associ-
ated with a lower performance in executive function-
ing and working memory [16]. Our results are in line 
with these findings. We found that a higher TAR> 13.9 

mmol/L was correlated with worse memory performance 
in younger patients with T2DM. Additionally, previous 
studies have suggested that elevated FPG could increase 
the risk of dementia [42]. In our study, we observed that 

Table 3  Association between CDT scores and TBR< 3.9 mmol/L after 
controlling for confounding factors
Models TBR< 3.9 mmol/L

OR 95% CI P values
Model 1
CDT 0.379 (0.185–0.778) 0.008

Model 2
CDT 0.385 (0.186–0.800) 0.011

TMTA 1.010 (0.999–1.021) 0.071
Model 1 was adjusted for age, sex, duration of disease, education and BMI.

Model 2 includes all variables in Model 1 plus TMTA.

TMTA, Trail Making Test A; CDT, Clock Drawing Test

Fig. 2  Logistic regression analysis of risk factors for the development of T2DM combined with TBR< 3.9 mmol/L. MMSE, Mini-Mental State Examination; 
MoCA, Montreal Cognitive Assessment; TMTA, Trail Making Test A; CDT, Clock Drawing Test; TBR, time below range. Education, A: primary school; B: junior 
middle school; C: senior high school; D: junior college degree
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higher FPG levels were associated with worse memory, 
attention and language abilities. Even after adjusting for 
various confounding factors, FPG remained one of the 
main factors affecting memory.

As such, our findings suggest that a higher TAR> 13.9 

mmol/L and FPG levels were associated with worse cog-
nitive function in younger patients with T2DM. The 
underlying mechanism for the association between very 
high-glucose hyperglycemia (TAR> 13.9 mmol/L) and cog-
nition remains unknown. Acute high-glucose hyper-
glycemia may lead to cellular hypoxia and intracellular 
hyperosmosis in cerebral neurons, resulting in neuronal 
damage [43]. Chronic high-glucose hyperglycemia can 
cause the accumulation of advanced glycation end prod-
ucts, ROS, and proinflammatory cytokines that induce 
neuronal damage [44]. Additionally, T2DM patients with 

cognitive dysfunction may have a higher risk of hypergly-
cemia due to forgetting to take glucose-lowering medica-
tions, although hyperglycemia may also be caused by a 
combination of excessive food intake and lack of exercise.

TIR is closely associated with micro- and macrovascu-
lar complications and mortality in patients with T2DM 
[30, 45–47]. Several studies have reported that TIR is 
closely related to cognitive dysfunction [15, 16]. How-
ever, in contrast to a previous study, our findings did not 
reveal a relationship between TIR and global cognition 
or specific cognitive domains. The discrepancies in our 
findings may be attributable to various reasons, includ-
ing the age and ethnicity of participants and the dura-
tion of FGM. Another potential factor contributing to 
the inconsistent outcome could be the high incidence of 
TBR< 3.9 mmol/L, which was observed in 45.8% of patients. 

Fig. 3  Correlation of FPG and neuropsychological test results. A, Correlation between FPG and DST forward scores. B, Correlation between FPG and BNT 
scores. C, Correlation between FPG and delayed recall scores. D, Correlation between FPG and cued recall scores. DST, Digit Span Test; BNT, Boston Nam-
ing Test; FPG, fasting plasma glucose
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Interestingly, patients with higher TIR had better lan-
guage ability at the same incidence of TBR< 3.9 mmol/L. 
Therefore, when adjusting the glucose-lowering regimen 
for patients with T2DM, the DATAA (Download Data, 
Assess Safety, Time in Range, Areas to Improve, Action 
Plan) model should be adopted in interpreting the FGM 
data in elderly patients and those with cognitive impair-
ment [48], and the first priority in this approach should 
be to reduce TBR to target levels, followed by address-
ing TIR. Moreover, implementing individualized glucose-
lowering treatment regimens may lead to improvements 
in language ability and help prevent the occurrence and 
progression of cognitive impairment.

The GRI is a composite metric for evaluating glycemic 
control by utilizing the percentages of hyperglycemia and 
hypoglycemia based on CGM data. The lower the GRI is, 
the better the quality of glycemic control [9]. However, in 
our study, we did not observe an association between the 
GRI and specific cognitive domains, which may be attrib-
uted to the limitations of the GRI. The GRI cannot inde-
pendently reflect the composition of hyperglycemia and 
hypoglycemia groups, and it may not predict the occur-
rence of cognitive impairment in patients with T2DM.

Several studies have suggested that cognitive dysfunc-
tion in patients with T2DM may be associated with glu-
cose variability [11, 14]. However, a cross-sectional study 
in Japan found no association between CV and cogni-
tive performance [16]. A CV% target ≤ 36% was defined 
as stable glucose, and a CV% target > 36% was defined as 
unstable glucose [49]. In the current study, we found that 
the CV% was 26.50% (23.65%, 33.00%), indicating stable 
blood glucose levels. As a result, there was no significant 
relationship between CV and global cognition or spe-
cific cognitive domains in the study population, which 
is consistent with the Japanese study. Previous stud-
ies have shown that MAGE correlated negatively with 
MMSE [14]. However, in our study, we did not find any 
association between MAGE and cognitive performance. 
One possible explanation for this discrepancy is the age 
difference between the two studies. The patients in our 
study were much younger (mean age: 61.40 years) than 
those in the other study (mean age: 78 years). Overall, 
our findings suggest that glucose variability may not sig-
nificantly impact cognitive function in younger patients 
with T2DM.

This study had several limitations. The cross-sec-
tional design did not allow us to explore the relationship 
between the key FGM-derived metrics and the develop-
ment of cognitive impairment. The present study also had 
a small sample size, and expansion of the sample volume 
and follow-up observation studies on patients are neces-
sary. In the future, we will collect more clinical samples 
in groups of different age stages, and participants will 
wear a blinded FGM system for 14 days.

Conclusions
Through the study of the relationship between key FGM-
derived metrics and specific cognitive domains, we found 
that a higher TBR< 3.9 mmol/L was associated with worse 
cognition (memory dysfunction, deficits in visuospatial 
ability, and impaired executive functioning). At the same 
incidence of TBR< 3.9 mmol/L, the patients with a higher 
TIR exhibited better performance on language ability. In 
addition, we found that a higher TAR10.1–13.9 mmol/L was 
associated with better memory performance, whereas a 
higher TAR> 13.9 mmol/L was correlated with worse mem-
ory performance. Therefore, it is important to be relaxed 
when setting glycemic targets for T2DM patients with 
cognitive impairment, with a strong focus on reducing 
TBR< 3.9 mmol/L and preventing high-glucose hyperglyce-
mia (TAR> 13.9 mmol/L).

Table 4  Association between cued recall scores and FPG/TBR/
TAR/TIR/GRI after controlling for confounding factors

β 95% CI P values
Model 1
FPG -0.307 (-0.441 

- -0.092)
0.003

Model 2
TBR< 3.9 mmol/L (%) -0.214 (-0.186 

- -0.008)
0.033

TAR> 13.9 mmol/L (%) -0.216 (-0.053 
- -0.003)

0.030

TAR10.1–13.9 mmol/L (%) 0.206 (0.001–0.067) 0.042

TIR (%) 0.086 (-0.011–0.026) 0.399

GRI -0.154 (-0.030–0.004) 0.129

Model 3
TBR< 3.9 mmol/L (%) -0.327 (-0.234 

- -0.062)
0.001

TAR> 13.9 mmol/L (%) -0.031 (-0.038–0.030) 0.818

TAR10.1–13.9 mmol/L (%) 0.343 (0.025–0.089) 0.001

Model 4
TBR< 3.9 mmol/L (%) -0.212 (-0.186 

- -0.006)
0.036

TAR> 13.9 mmol/L (%) -0.218 (-0.054 
- -0.003)

0.030

TAR10.1–13.9 mmol/L (%) 0.203 (0.001–0.067) 0.046
Model 1 was adjusted for age, sex, duration of disease, education and BMI.

Model 2 was adjusted for age, sex, duration of disease, education and BMI.

Model 3 includes all variables in model 2 plus FPG.

Model 4 includes all variables in model 2 plus depression scale.

FPG, fasting plasma glucose; TIR, time in range; TAR, time above range; TBR, 
time below range

GRI, glycemia risk index
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