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Abstract

Background: Significant genetic association has been found in patients with severe carotid artery stenosis (CAS).
The present study wished to investigate if metabolites may also act as biomarkers for CAS.

Methods: Consecutive patients with at least one carotid artery stenosis > = 60% on cerebral angiography were
prospectively recruited from May 2007 to January 2016. Normal controls were recruited from outpatient clinic who
had no stroke and coronary artery disease (CAD) history, and the brain magnetic resonance or computed tomographic
angiography showed bilateral CAS < 30%. Risk factor profile, clinical characteristics, age, and clinical features were
recorded. All subjects were male, and none had diabetes. 1H-NMR spectroscopy-based metabolomics analysis
was carried out for plasma samples.

Results: Totally, 130 male subjects were recruited. Age had no significant difference between the controls
and CAS group (60.2 ± 5.9 vs. 63.3 ± 6.0, p = 0.050). The CAS group had significantly higher frequency of CAD,
hypertension, smoking and alcohol but lower body mass index than the controls (p < 0.05). The laboratory
tests showed CAS group had significantly higher level of homocysteine but lower levels of cholesterol, high-
density lipoprotein and hemoglobin than the controls (p < 0.05). The 1H-NMR based plasma metabolomics
analysis indicated that choline was significantly lower in CAS patients. The VIP values of lipids were greater
than 1.0, which were considered significantly different.

Conclusions: Our results suggest homocysteine, choline and lipids in association with traditional risk factors
may be involved in the pathogenesis of CAS. Diet adjustment to control homocysteine, choline and lipids
may be helpful for the prevention of CAS.
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Background
Stroke is the third leading cause of death [1] in 2013 and
the most common cause of disability worldwide. Due to
the aging and growth of the population, there is an in-
crease in global cerebrovascular deaths [2]. Cerebrovas-
cular mortality is increasing if the combats against
vascular risk factors are not successful [3]. This condi-
tion suggests there is a strong need to improve the pre-
vention of vascular death.

Metabolomics has been applied in several fields of ath-
erosclerosis research, including stable coronary artery
disease (CAD) [4–6], acute coronary syndrome [7–9],
atherosclerotic plaque composition [10, 11], diabetes
[12], cerebral infarction/ischemia [13, 14], and cardiovas-
cular surgery [15], etc. Nevertheless, there is no metabo-
lomics report in patients with severe carotid artery
stenosis (CAS). Previous genome-wide association stud-
ies [16, 17] including ours [18] have found HDAC9 (en-
coding histone deacetylase 9) on chromosome 7p21.1
and variants on chromosome 6p21.1 are associated with
extracranial large artery atherosclerosis. It is possible
that some specific metabolites can be related to the
pathogenesis of extracranial CAS.
To improve our knowledge of the pathophysiological

changes in atherosclerosis, the study of biomarkers
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related to atherogenesis is becoming increasingly im-
portant to reach an early detection of CAS. Metabolo-
mics can be a good tool in the analysis of disease
mechanisms and biomarkers of disease [19]. As metabo-
lomics is defined as a useful study of small-molecule me-
tabolites derived from cell metabolism, metabolomics
can offer a snapshot of the cellular changes that are tak-
ing place before or during atherosclerosis progression
using a biological sample. It is possible that metabolo-
mics study can help to obtain the metabolite profiles
that may play a certain role in the atherogenesis of CAS
and identify those patients who will be at risk of or have
suffered from atherosclerosis. The present study focused
on the metabolomics study in association with trad-
itional risk factors to investigate the biomarkers in pa-
tients with severe CAS.

Methods
The study protocol was performed according to our pre-
vious report [20] and approved by the institutional re-
view board of Chang Gung Memorial Hospital, Linkou
Medical Center. The written informed consents were
obtained from all subjects before their involvement in
the study.

Subjects
We prospectively recruited consecutive patients who
were admitted for cerebral angiography (cerebral digital
subtraction, brain computed tomographic or brain mag-
netic resonance angiography) to evaluate the necessity of
carotid artery intervention and who had at least one of
the carotid artery with diameter stenosis > = 60% in any
segment from common carotid to extracranial internal
carotid artery in our hospital during the study period
from May, 2007 to January, 2016. The control group was
recruited from the outpatient clinic, who had no stroke
and CAD history, and the brain magnetic resonance or
computed tomographic angiography showed bilateral ca-
rotid artery diameter stenosis < 30%. The diameter sten-
osis of artery was calculated by NASCET criteria [21].
Age, clinical presentations, risk factor profile, and la-
boratory blood tests were recorded (Table 1). Exclusion
criteria included (i) the presence of systemic diseases
such as hypothyroidism, decompensated liver cirrhosis,
and systemic lupus erythematosus; (ii) the presence of
other disorders such as cancer and severe infection that
might compromise survival within 6 months; (iii) pa-
tients with modified Rankin scale > = 3; (iv) patients with
a serum creatinine > = 2mg/dL; and (v) patients with se-
vere peripheral artery disease.

Blood sampling and examination
Blood samples were collected at enrollment for controls
and in stationary phase (more than 3 months after

stroke onset) for stroke patients. Samples for metabolo-
mics were collected in sodium citrate tubes. Blood was
centrifuged immediately (10 min, 3000 rpm at 4 °C) and
plasma was aliquoted into separate polypropylene tubes
that were immediately stored at -80 °C. Plasma was ana-
lyzed by metabolomics workflow described in the suc-
ceeding section. Measurement of other parameters,
including homocysteine, C-reactive protein, lipid pro-
files, hemoglobin, blood sugar, and kidney function was
conducted at Department of Laboratory Medicine in
Chang Gung Memorial Hospital.

NMR analysis of the plasma
1H-NMR spectroscopy-based metabolomic analysis was
carried out for plasma samples. The frozen plasma sam-
ples were thawed on the ice. An aliquot of 350 μL of
plasma sample was mixed with 350 μL of a buffer solu-
tion (75 mM Na2HPO4, 0.08% TSP, 2 mM NaN3, 20%

Table 1 Comparison of clinical profiles between controls and
patients with severe extracranial carotid artery stenosis (CAS)

Group

Control CAS p
valuen = 65 n = 65

Age (years) 61.3 ± 5.2 63.2 ± 5.7 0.050

Male, n (%) 65 (100) 65 (100)

Ischemic stroke, n (%) 0 (0) 63 (97.0) < 0.001

Coronary artery disease, n (%) 4 (6.2) 19 (29.2) < 0.001

Risk factor profile

Hypertension, n (%) 25 (38.5) 48 (73.8) < 0.001

Atrial fibrillation, n (%) 0 (0) 0 (0)

Smoking, n (%) 25 (38.5) 52 (80.0) < 0.001

Alcohol, n (%) 14 (22.5) 26 (40.0) 0.039

Hx of recurrent stroke, n (%) 0 (0) 18 (27.7) < 0.001

Body mass index (kg/m2) 25.7 ± 7.0 24.6 ± 6.0 0.058

Laboratory blood test

Homocysteine (mg/dL) 10.3 ± 4.0 12.9 ± 7.8 0.011

HS-CRP (mg/dL) 2.5 ± 5.8 3.2 ± 3.3 0.446

Total Cholesterol (mg/dL) 209.1 ± 43.2 178.9 ± 50.5 < 0.001

Triglyceride (mg/dL) 146.5 ± 78.0 135.5 ± 77.6 0.418

LDL-C (mg/dL) 123.2 ± 41.8 112.5 ± 38.8 0.105

HDL-C (mg/dL) 48.0 ± 13.2 38.9 ± 10.9 < 0.001

Serum sodium (mEq/L) 141.2 ± 47.0 140.3 ± 68.3 0.219

Hemoglobin (g/dL) 14.7 ± 7.4 13.7 ± 5.9 0.018

AC sugar (mg/dL) 100.7 ± 36.6 97.6 ± 49.4 0.304

Uric acid (mg/dL) 6.6 ± 1.9 6.3 ± 2.3 0.358

eGFR (ml/min/1.73 m2) 75.2 ± 28.1 84.0 ± 46.3 0.319

Patients with diabetes are excluded from the study. LDL-C low density
lipoprotein-cholesterol, HDL-C high density lipoprotein-cholesterol, eGFR
estimated glomerular filtration rate
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D2O). The mixture was centrifuged at 12,000×g at 277 K
for 5 min. Finally, 600 μL of the supernatant was trans-
ferred to 5-mm NMR tubes for analysis. Quality control
sample was prepared by pooled patient samples with
one control sample in every 50 test samples [22].

1H-NMR spectra were acquired on a Bruker Avance II
HD 600-MHz NMR spectrometer at 310 K using a 5-
mm inverse triple resonance CryoProbe (1H/13C/15N)
with cold preamplifier for 1H and 13C with a z-axis gra-
dient (Bruker Biospin GmbH, Rheinstetten, Germany).
The Carr-Purcell-Meiboom-Gill (CPMG) spin-echo
pulse sequence (RD-90°-[τ-180°-τ] n-ACQ) was routinely
applied. A total T2 relaxation time of 80 ms was used to
attenuate broad signals from proteins and lipoproteins.
The 1H NMR spectrum was collected with a spectral
width of 12,019.23 Hz, relaxation delay of 4.0 s, and ac-
quisition time of 2.7 s. Water solvent signal was sup-
pressed by a continuous wave irradiation on water
frequency during relaxation delay. Free induction decay
(FID) was acquired into 72 k data points, and the FID
acquisitions were accumulated 32 times to increase
signal-to-noise ratio. FIDs were weighted by an expo-
nential function with a 0.3 Hz line broadening factor
prior to Fourier transformation. All acquired NMR spec-
tra were phase- and baseline-corrected, then referenced
to the doublet at 5.23 ppm.
All NMR spectra were phased and baseline-corrected

using Topspin software (version 3.2.2; Bruker Biospin
GmbH, Rheinstetten, Germany). Each 1H NMR spectrum
from plasma was segmented into equal widths (0.01 ppm),
corresponding to regions 9.50–0.50 ppm. The regions be-
tween 6.50 and 4.50 ppm containing residual water signal
were removed. The spectral data were normalized to the
reference.

Statistical analyses
The resulting datasets were analyzed with statistical models
including multivariate analyses principal-components-
analysis (PCA), partial-least-squares-discriminant-analysis
(PLS-DA), and orthogonal-projection-to-latent-structure-
discriminant-analysis (OPLS-DA) using a web-based meta-
bolomics tool, MetaboAnalyst (https://www.metaboanalyst.
ca/MetaboAnalyst/faces/home.xhtml), and Umetrics SIMCA
Version 13 (https://umetrics.com/products/simca) to find vari-
ables that were correlated across the samples. PCA, an un-
supervised pattern recognition method, was performed to
examine the intrinsic variation in the dataset. OPLS-
DA was used to maximize covariance between the
measured data (peak intensities from the NMR spectra)
and the response variable (predictive classifications). A
non-overlapping 1H signal from each metabolite was used
to calculate the integral area, and the identified metabo-
lites were quantified by relative peak intensity. The vari-
able importance in the projection (VIP) value of each

variable in the model was calculated to indicate its contri-
bution to the classification. A higher VIP value repre-
sented a stronger contribution to discrimination among
groups. The VIP values of those variables greater than 1.0
were considered significantly different.
The clinical results were expressed as the mean ± SD

for continuous variables and as the number (percentage)
for categorical variables. Data were compared by two-
sample or paired t-tests and Chi-square, when appropri-
ate. All statistical analyses were 2-sided and performed
using SPSS software (version 15.0, SPSS, Chicago, IL,
USA). The data with p-values < 0.05 were considered sig-
nificant. SPSS software was also used to test the normal-
ity of control and CAS groups. The assessment for
normality used Kolmogorov-Smirnov test. Of the 25 me-
tabolites, 15 metabolites were normally distributed in
control group and 13 in CAS group.

Results
A total of 130 male subjects were recruited during the
study period. Among these 130 patients, there were 65
control subjects and 65 CAS patients. As presented in
Table 1, there was no significant difference in age be-
tween the controls and CAS group (60.2 ± 5.9 vs. 63.3 ±
6.0, p = 0.050). The CAS group has significantly higher
frequency of CAD, hypertension, and smoking than the
controls (p < 0.001). There was no stroke history in the
control group but 97% of CAS patients had ischemic
stroke and 28% had history of recurrent stroke. The
laboratory blood tests showed CAS group had signifi-
cantly lower levels of cholesterol and high-density
lipoprotein than controls (p < 0.001). The homocyst-
eine levels in CAS patients were higher than that in
controls (p = 0.011), but the CRP levels did not have
significant difference.
The metabolomics approach with 1NMR as a tool was

carried out on the plasma samples of CAS patients and
control subjects. The 1H-NMR based plasma metabolo-
mics analysis is an untargeted and semi-quantitated ap-
proach. The data were showed in Table 2, and the
chemical shift of each metabolites were presented as
mean ± SD. After data normalization and statistical ana-
lysis by t-test, the results indicated that choline was sig-
nificantly lower in CAS patients (p = 0.00177). PCA was
performed on the dataset containing the chemical shift
of detected metabolites in plasma. On a PCA score plot
(Fig. 1a), each dot represents a sample (CAS patient in
red and control in green). The dot distribution was
homogeneous in each group, indicating no significant
variation within group. The PCA score plot (Fig. 1a) cor-
responding to the first two principal components
showed that PC1 and 2 explained 88.4 and 3.8%, respect-
ively, of the dataset total variance. In order to confirm
the patterns observed in PCA and to identify metabolites
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responsible for these patterns, supervised OPLS-DA
models were constructed to relate metabolic profiles to
lipids, lactate, and choline. The 2-D score plot of metab-
olites in plasma samples between controls and CAS pa-
tients was shown in Fig. 1b. When VIP scores of the
metabolites were greater than 1.0, these metabolites
were also considered significantly different (Fig. 2). In
the PLS-DA model, we searched 5 components for clas-
sification, and the VIP values in component 5 for lactate
1.332, lipid 1.31, lactate 4.125, lipid 2.01, lipid 0.90, cho-
line B3.205, and creatinine B4.045 were 2.3771, 2.2358,
1.4470, 1.4364, 1.1465, 1.0570, and 1.0274, respectively.
Box and Whisker plots of these potential metabolites to
differentiate CAS patients and controls were shown in
Fig. 3. The S-plot for OPLS-DA run by MetaboAnalyst
4.0 in control and CAS groups was also examined
(Additional file 1: Figure S1).

Discussion
It is reported hormonal and sex chromosome mecha-
nisms may interact in the sex-specific control of certain
diseases such as atherosclerosis, aneurysms, ischemia/re-
perfusion injury, and hypertension [23], and gender and
age were identified as the principal factors explaining
metabolome variability [24]. Since our CAS patients
tended to be older and were mostly males, but the con-
trols were relatively younger, we recruited only male
subjects for study and did our best to keep the age bal-
anced between controls and CAS patients (p value =
0.050). It has been reported that diabetes may have far
reaching metabolic effects beyond raised blood glucose
and may impact systemic metabolism [25]. To prevent
from bias due to gender and diabetes in metabolomics
study, our study recruited only males and excluded pa-
tients with diabetes.
Our study has its novelty since the etiologies of ath-

erosclerosis is multifactorial, we combined metabolomics
analysis with the traditional risk factors to identify the
biomarkers for CAS. We found CAS patients had lower
choline but higher homocysteine and lipid levels com-
pared to controls. Decreased serum levels of several indi-
vidual phosphatidylcholine and lysophosphatidylcholine
species were observed in the patients with peripheral ar-
tery disease and CAD in comparison to the healthy
subjects [26]. Polymorphic variation in the choline trans-
porter (CHT1) gene was reported to predict early, subclin-
ical measures of carotid atherosclerosis [27]. The low
dietary intake of choline and its metabolite betaine may
aggravate the atherogenesis through the effects on homo-
cysteine methylation pathways as well as the choline’s an-
tioxidants properties [28]. Elevated plasma homocysteine
and lipid levels are well known risk factors for atheroscler-
osis [29]. In the investigation of early-stage atherosclerotic
development and progression in chow-fed apolipoprotein
E-deficient mice, distinct plasma metabolomic profiles of
glycerophospholipid and sphingolipid may help to differ-
entiate the different stages of atherosclerotic progression
[30]. The study of carotid plaque tissue using two ultra
performance liquid chromatography coupled to mass
spectrometry (MS) found changes in several metabolite
species were consistent with well-established pathways in
atherosclerosis such as the cholesterol, purine, pyrimidine,
and ceramide pathways [31]. Also, metabolites related to
the eicosanoid pathway (arachidonic acid and arachidonic
acid precursors) and the three acylcarnitine species (butyr-
ylcarnitine, hexanoylcarnitine, and palmitoylcarnitine) that
act as intermediates of the beta-oxidation were detected
in higher intensities in symptomatic carotid plaque tissues
compared to asymptomatic tissues [32]. These data in
combination with ours may suggest these metabolites es-
pecially plasma choline, homocysteine, and lipid profiling
may be used as biomarkers for atherogenesis.

Table 2 Comparison of the results of 1H NMR spectrum between
controls and patients with severe extracranial carotid artery
stenosis (CAS)

Chemical shift (ppm)

Metabolite ID Control (n = 65) CAS (n = 65) P value

Formate (8.46) 0.00235 ± 0.00046 0.00222 ± 0.00049 0.12583

Histidine (7.778) 0.00756 ± 0.00185 0.00764 ± 0.00167 0.80616

Phenyalanine (7.38) 0.00767 ± 0.00134 0.00781 ± 0.00132 0.56561

Phenyalanine (7.336) 0.01426 ± 0.00204 0.01485 ± 0.00243 0.13568

Tyrosine (7.20) 0.01159 ± 0.00179 0.01168 ± 0.00218 0.79284

Histidine (7.056) 0.00743 ± 0.00166 0.00726 ± 0.00145 0.53744

Tyrosine (6.906) 0.01066 ± 0.00164 0.01020 ± 0.00197 0.15681

Lactate (4.125) 0.09552 ± 0.02848 0.11547 ± 0.04951 0.00584

Creatinine (4.045) 0.02056 ± 0.00705 0.03025 ± 0.03457 0.03006

Glucose (3.248) 0.18253 ± 0.03440 0.16856 ± 0.04925 0.06328

Choline (3.205) 0.14156 ± 0.03223 0.12382 ± 0.03109 0.00177

Glutamine (2.47) 0.09644 ± 0.01241 0.09548 ± 0.01768 0.72204

Pyruvate (2.365) 0.03074 ± 0.00577 0.02922 ± 0.00602 0.14573

Lipid (2.23) 0.12925 ± 0.08064 0.12036 ± 0.06102 0.47984

N-acetylglycoprotein
(2.054)

0.32462 ± 0.11493 0.31241 ± 0.08730 0.49632

Lipid (2.01) 0.34895 ± 0.11742 0.34877 ± 0.13591 0.99377

Acetate (1.915) 0.02723 ± 0.00443 0.02956 ± 0.01926 0.34458

Lipid (1.6) 0.25874 ± 0.16146 0.24437 ± 0.12969 0.57693

Lipid 0.24517 ± 0.14945 0.21435 ± 0.12022 0.19762

Lactate (1.332) 0.51526 ± 0.21607 0.54140 ± 0.20130 0.47661

Lipid (1.31) 3.17346 ± 1.64186 2.92170 ± 1.37389 0.34491

Valine (1.044) 0.03794 ± 0.01059 0.03926 ± 0.01097 0.48680

Isolecuine (1.005) 0.01209 ± 0.00389 0.01224 ± 0.00349 0.82135

Leucine (0.965) 0.02646 ± 0.00641 0.02479 ± 0.00567 0.11783

Lipid (0.90) 1.59928 ± 0.50784 1.42274 ± 0.44536 0.03709

Data are presented as mean ± SD. VIP variable importance in the projection
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Fig. 1 a Principal components analysis (PCA) is performed on the dataset containing the chemical shift of detected metabolites in plasma. On a
PCA score scatter plots (a), each dot represents a sample (carotid artery stenosis [CAS] patient in red and control in green). The dot distribution
shows homogeneous in each group, indicating no significant variation within group. The PCA score plot corresponding to the first two principal
components (PC) shows that PC1 and 2 can explain 88.4 and 3.8%, respectively, of the dataset total variance. b To confirm the patterns observed
in PCA and to identify metabolites responsible for these patterns, orthogonal-partial-least squares-discriminant-analysis (OPLS-DA) models are
constructed to relate metabolic profiles to lipids, lactate, and choline. The 2-D score plot of metabolites in plasma samples between controls
and CAS patients is shown in panel B which enables differentiation of controls and CAS patients

Fig. 2 Analysis of the control and carotid artery stenosis (CAS) patients’ sample utilizing Umetrics SIMCA Version 13 reveals differences. The top
15 important features of the metabolomics markers identified by the scores of variable importance in the projection (VIP) are listed. Blue square
represents controls, and red square represents CAS patients. The color of the bar indicates that the group of individuals has relatively high
concentration comparing to the other group. When VIP scores of the metabolites are greater than 1.0, these metabolites are considered
significantly different. In the PLS-DA model, we search 5 components for classification, and the VIP values in component 5 for lactate 1.332,
lipid 1.31, lactate 4.125, lipid 2.01, lipid 0.90, choline B3.205, and creatinine B4.045 are 2.3771, 2.2358, 1.4470, 1.4364, 1.1465, 1.0570, and
1.0274, respectively
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It is suggested that NMR metabolomics can be incor-
porated as a routine survey in large biobanks, which is
beneficial both from the inexpensiveness and reproduci-
bility [33, 34]. Successful examples include NMR meta-
bolic profiling of cardiovascular events [35–38] and
ischemic stroke [39]. Stegemann et al. found three lipid
species (triacylglycerols, cholesterol esters, and phospha-
tidylethanolamines) on top of traditional risk factors
could improve risk discrimination and classification for
cardiovascular disease [37]. Wurtz et al. reported tyro-
sine and glutamine levels were cross-sectionally associ-
ated with carotid intima media thickness and the
presence of angiographically ascertained CAD in inde-
pendent populations [36]. Review article by Qureshi et
al. demonstrated certain metabolic pathways may be
related to the pathological processes of stroke, par-
ticularly including branched chain amino acid, homo-
cysteine, folate, anaerobic, and lipid metabolism [39].
Levels of plasma branched-chain amino acid, mea-
sured by NMR, were found elevated in type 2 dia-
betes and could be associated with carotid intima
media thickness, a proxy of subclinical atherosclerosis
[40]. Brindle et al. found NMR-based profiling had
significant difference and provided a > 90% predictive
power for discrimination between subjects with severe

CAD and those with angiographically normal coron-
ary arteries [4].
In the study of cardiovascular disease using MS, the

use of liquid chromatography-MS found lactate, bypro-
ducts of AMP metabolism, and metabolites of the citric
acid cycle were discordant between the individuals with
and without exercise-induced myocardial ischemia [9].
The MS/MS-based studies found two PCA-derived me-
tabolite factors were able to discriminate individuals
with CAD from those without CAD [6], and there was a
strong association of arginine and its downstream me-
tabolites, ornithine and citrulline, with CAD and with
major adverse cardiovascular events including death,
myocardial infarction, and stroke [5]. In patients under-
going cardiac catheterization, five metabolites were
found to be independently associated with mortality
including medium-chain acylcarnitines, short-chain
dicarboxylacylcarnitines, long-chain dicarboxylacylcar-
nitines, branched-chain amino acids, and fatty acids
[41]. It is postulated that metabolic profiles can help
to predict cardiovascular events independently of
standard predictors.
In the study of stroke, patients with stroke recurrence

were found to have significantly lower concentrations of
a specific lysophosphatidylcholine (LysoPC [16:0]) [42].

Fig. 3 Box and Whisker plots show the distribution of the five potential metabolites to differentiate carotid artery stenosis (CAS) patients and
controls. The ends of the box are the upper and lower quartiles, so the box spans the interquartile range. The median is marked by a line inside
the box

Lee et al. BMC Neurology          (2019) 19:138 Page 6 of 8



Moreover, LysoPC (20:4) was also identified to be a po-
tential biomarker of stroke recurrence and might in-
crease the prediction power of age, blood pressure,
clinical features, duration of symptoms, diabetes scale,
and large artery atherosclerosis. In the cases of large ar-
tery atherosclerosis, a potential biomarker of LysoPC
(22:6) was also suggested [42]. In the studies of ischemic
stroke process, Wang et al. [43] found 13 metabolites
had significant changes with malonic acid and glycine
being the most noticeable variable metabolites. This dra-
matic change of malonic acid and glycine was suggested
to be able to serve as biomarkers in the dynamic patho-
genesis of cerebral ischemia. In the study of acute ische-
mic stroke, increased plasma excretion of lactate,
pyruvate, glycolate, and formate, decreased excretion of
glutamine and methanol, and decreased urine levels of
citrate, hippurate, and glycine were noticed in stroke pa-
tients compared to healthy controls [13]. These metabo-
lites detected from plasma and urine of patients with
acute cerebral infarctions were suggested to be associ-
ated with anaerobic glycolysis, folic acid deficiency, and
hyperhomocysteinemia.

Conclusions
Many previous studies have demonstrated the signifi-
cance of metabolomics in the prediction of cardiovascu-
lar and cerebrovascular diseases. However, the study of
CAS is limited. In CAS, there remains a clinical need to
develop an objective test to confer rapid and accurate
diagnostic discrimination of atherosclerosis to enable the
provision of better direct investigation for rapid inter-
vention. The present study showed choline, homocyst-
eine, and lipids in association with traditional risk
factors could be predictive biomarkers for carotid artery
atherosclerosis. Previous genome-wide association stud-
ies have demonstrated certain genes are associated with
extracranial carotid artery atherosclerosis. The use of
metabolomics in the biomarker research of extracranial
carotid atherosclerosis may add the potential to improve
the accuracy of diagnostic discrimination of genomic
predictors in atherogenesis.

Additional file

Additional file 1: Figure S1. The S-plot for orthogonal-partial-least-
squares-discriminant-analysis (OPLS-DA) run by MetaboAnalyst 4.0 in con-
trol group and carotid artery stenosis group. (TIF 230 kb)
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