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Coma recovery scale-r: variability in the
disorder of consciousness
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Abstract

Background: Despite evidence from neuroimaging research, diagnosis and early prognosis in the vegetative
(VS/UWS) and minimally conscious (MCS) states still depend on the observation of clinical signs of responsiveness.
Multiple testing has documented a systematic variability during the day in the incidence of established signs of
responsiveness. Spontaneous fluctuations of the Coma Recovery Scale-revised (CRS-r) scores are conceivable.

Methods: We retrospectively analyzed the CRS-r repeatedly administered to 7 VS/UWS and 12 MCS subjects
undergoing systematic observation during a conventional 13 weeks. rehabilitation plan.

Results: The CRS-r global, visual and auditory scores were found higher in the morning than at the afternoon
administration in both VS/UWS and MCS subgroups over the entire period of observation. The probability for a
VS/UWS subject of being classified as MCS at the morning testing at least once during the 13 weeks. observation
was as high as 30 %, i.e., compatible with the reported misdiagnosis rate between the two clinical conditions.

Conclusions: Multiple CRS-r testing is advisable to minimize the risk of misclassification; estimates of spontaneous
variability could be used to characterize with greater accuracy patients with disorder of consciousness and possibly
help optimize the rehabilitation plan.
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Background
Diagnosis and the early prognosis of subjects in the vege-
tative state/unresponsive wakefulness syndrome (VS/
UWS) [1, 2] or minimally conscious state (MCS) [3–7]
still depend on the clinical evaluation of responsiveness
[4, 5, 8], while functional assessment by neuroimaging
remains mostly limited to research [5, 9–15]. The diag-
nostic error between the VS/UWS and MCS reportedly
still hovers up to 25–45 %, with possible implications in
the patients’ prognosis, treatment, allocation of re-
sources, etc. [3, 4, 16]. Clinical scales have been devel-
oped to provide the attending physician and therapist
with reliable criteria of behavioral assessment and to
allow more accurate evaluations [3, 16, 17]. Among
these, the Coma Recovery Scale - revised (CRS-r) is an
established and widely used tool [18, 19], with higher

percentage of MCS subjects correctly diagnosed and bet-
ter overall classification accuracy than the current clin-
ical criteria [7].
The within/between subject (spontaneous) variability of

the signs in use to evaluate brain responsiveness in VS/
UWS and MCS is a possible critical issue adding to the
existing controversy on their pathophysiological meaning
[17, 20]. The visual pursuit response, a major CRS-r item
recognizable in 70–80 % of subjects in MCS [9, 21, 22]
and key marker of evolution from VS/UWS [23, 24], has
been also reported with lower incidence (~20–30 %) in
subjects otherwise diagnosed as VS/UWS [20, 25–28].
Multiple testing has documented systematic spontaneous
fluctuations in the incidence of this response in the course
of the day in both VS/UWS and MCS subjects; the overall
chance of observing it at least once per day was ~33 %
and ~62 % in the VS/UWS and MCS subgroups, respect-
ively, with maxima at 10.30 am and 3.00 pm and no re-
sponse at postprandial time in both subjects’ groups [29].
Individual variability may suggest limited diagnostic accur-
acy for the visual pursuit response and, by extension, risk
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of erroneous CRS-r classification when subjects are tested
at a single time point of the day. Purpose of this study was
to analyze the spontaneous fluctuation over time of the
CRS-r scores.

Methods
We studied retrospectively the CRS-r scores obtained
from two subgroups of subjects with disorder of con-
sciousness undergoing a standard rehabilitation plan.
They had been diagnosed by the attending physician as
being in chronic VS/UWS (n = 7; age 51.8 ± 11.6 years.) or
MCS (n = 12; age 51.4 ± 17.4 years.) at the beginning of
treatment; diagnosis was based on the current clinical
criteria and guidelines by the Aspen group [19]. The CRS-
r global score was equal or lower than 7 (mean = 6.42 ±
0.49) in VS/UWS subjects and between 9 and 15 in the
MCS patients (mean = 11.08 ± 1.75). Subjects clinically
unstable, under treatment with (neuro)active drugs or
beta-blockers, with anoxia, history of psychiatric disorder,
concurrent systemic diseases, or evidence of recurrent
pain were not considered. Subjects requiring Arousal
Facilitation Protocol procedures (AFP) were also excluded
in order to avoid the interference of these procedures on
their responses to the CRS-r stimulus condition. The VS/
UWS and MCS subjects’ subgroups did not differ as to
age (Mann-Whitney’s test: z = −0.466, p > 0.05) or length

of hospitalization (1144.3 ± 551.2 days in VS/UWS and
1711.4 ± 455 days in MCS; z = −1945, p > 0.05). Summary
demographics and clinical information are reported in
Tables 1 and 2.
The study has been approved by the local public health

care Ethical Committee (Provincial Health Authority of
Crotone). The patients’ relatives and caregivers were in-
formed about the study aims and gave their consent to the
use of the patients’ data, which have been always treated
under condition of anonymity. The ethical principles of the
Declaration of Helsinki (1964) by the World Medical Asso-
ciation concerning human experimentation were followed.
Patients were treated following a standard plan with

alternating 2 weeks. periods of intensive rehabilitation
(two sessions/day, morning and afternoon; hereafter
Phase A) and 1 week. periods of standard rehabilitation
(one session/day; Phase B) for a total of 13 weeks. The
protocol began and ended with the phase B (Fig. 2). Sub-
jects received nursing care before 9.00 a.m. and after
5.00 p.m. and were fed at noon compliant to the unit
schedule; the rehabilitation sessions and CRS-r evalu-
ation always began at least 30 min. after the morning
nursing care in order to avoid induced arousal or other
possible interference.
CRS-r was always administered before rehabilitation and

in the two time windows of the day when responsiveness

Table 1 Summary demographics and clinical information at the beginning of the rehabilitation plan. (The patients’ relatives and
caregivers gave their consent to the use of the patients’ data)

Sex Age
range

Aetiology CRS-r Time from
brain injury (days)Total score Visual subscore Auditory subscore

VS/UWS Female 38–73 Vascular 6 1 1 662

Other 7 0 1 2278

Vascular 6 1 1 663

Vascular 7 0 1 958

Vascular 6 0 2 1256

Male 41–65 Traumatic 6 1 1 1199

Traumatic 7 1 1 1201

MCS Male 31–65 Vascular 9 3 2 1199

Traumatic 10 3 2 1492

Traumatic 10 3 0 1958

Traumatic 13 3 1 2380

Traumatic 11 2 1 2455

Traumatic 11 2 1 2345

Traumatic 15 3 3 2399

Female 35–79 Traumatic 9 3 2 2251

Vascular 10 3 1 1393

Vascular 10 3 1 1773

Vascular 13 2 1 2298

Traumatic 12 3 1 1542
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had previously proved highest in a previous study
(9.30–11.00 a.m.; 3.00–4.00 p.m.) [29]. CRS-r admin-
istration was once a week in phases A (in the morn-
ing the first week and in the afternoon the second
week); in phases B, it was administered in the morning
and afternoon at the beginning and end of the week. The
CRS-r was administered following the international guide-
lines by two expert examiners (a neuropsychologist and
an occupational therapist) who were requested to examine
each patient together and to reach an agreement on each
measured item. When tested, patients were comfortably
sitting on an armchair in a familiar setting with a constant
temperature of 24 °C in the absence of environmental
noise or interference; in no case, patients were reported to
have showed discomfort in the presence of the exam-
iners or during testing. Only patients with matching
numbers of assessments were considered in the study.
Scores from 342 CRS-r administrations were obtained
in total (18 times per subject).
The CRS-r global scores and subscores at the morning

and afternoon ratings and at the beginning and end of the
protocol were compared. Statistical processing was by
Wilcoxon signed-rank test, after collapsing the data from
each patient into a pair of values to avoid alpha inflation
due to the sample size when comparing conditions (morn-
ing vs afternoon; baseline vs. end of treatment). To this
end, nine values from the morning assessment and the
corresponding nine values at the afternoon administration
(4 from phase A and 5 from phase B) were averaged. The
effect size (r) (i.e., the index measuring the magnitude of
difference or change between two conditions, in this case
baseline vs. end of the protocol and morning vs. after-
noon) [30] was calculated as the z/square root (N)
(where N is the number of observations on which z
is based) and will be hereafter formally referred to as
not relevant (r < 0.1), small (0.1 < r < 0.3), medium
(0.3 < r < 0.5), or large (r > 0.5) [31]. The Bonferroni

correction for multiple testing was applied for a p < 0.005
level of statistical significance on ten comparisons between
morning and afternoon. The risk of misclassification of
subjects in VS/UWS or MCS to the other clinical condi-
tion when relying only on a single (morning or afternoon)
assessment was tested by the Odds Ratio and Risk Ratio
in both subjects’ groups.

Results and discussion
Individual CRS-r scores at the morning and afternoon
scale administration are shown in Fig. 1. In both VS/
UWS and MCS subgroups and over the entire period of
observation, the mean CRS-r global scores were higher
at the morning assessment (7 ± 1.5 and 11 ± 1.9 for VS/
UWS and MCS, respectively) than in the afternoon (6.3
± 1.3 and 10.1 ± 1.9) (Wilcoxon’s z = −3.916, p < 0.0001,
r = 1.04 and z = −5.195, p < 0.0001, r = 1.06) (Fig. 2).
Scores were higher in the morning in both Phases A and
B in the MCS subgroup (Wilcoxon’s z = −3.513, p[cor-
rect] < 0.001, r = 0.75 and z = −3.843, p[correct] = 0.018,
r = 0.82, respectively), but only in Phase B the difference
reached statistical significance in the VS/UWS subgroup
(Wilcoxon’s z = −3.840, p[correct] < 0.001, r = 1.02). The
morning vs. afternoon difference was observed also when
considering posttraumatic subjects or patients with vascu-
lar brain injury separately (Wilcoxon’s z = 2.874, p[cor-
rect] = 0.024, r = 0.67 and Wilcoxon’ = s z = −4.415,
p[correct] = 0.000, r = 0.75 respectively) (Fig. 1). It in-
creased progressively over the 13 weeks. observation
period in VS/UWS, while reaching a maximum between
the 6th and 9th weeks of protocol to decline thereafter in
the MCS subgroup (Figs. 2 and 3); as a result, the mean
CRS-r global scores were higher at the end of the protocol
compared to baseline in the VS/UWS (7.6 ± 2.4 and 5.9 ±
0.8, respectively; morning-afternoon average; Wilcoxon’s
z: −2.347, p = 0.019, effect size: r = 0.63), but not in MCS
(Figs. 2 and 3). The morning vs. afternoon difference in

Table 2 Summary demographics and clinical information at the beginning of the rehabilitation plan. (The patients’ relatives and
caregivers gave their consent to the use of the patients’ data)

Score Auditory scale Visual scale Motor scale Oromotor/Verbal scale Communication scale Arousal scale

6 - - Functional Object Use - - -

5 - Object Recognition Automatic Motor
Response

- - -

4 Consistent movement
to command

Object Localization:
Reaching

Object Manipulation - - -

3 Reproducible Movement
to Command

Visual Pursuit Localization to Noxious
Stimulation

Intelligible
Verbalization

- Attention

2 Localization to Sound Fixation Flexion Withdrawal Vocalization/Oral
Movement

Functional: Accurate Eye Opening w/o
Stimulation

1 Auditory Startle Visual Startle Abnormal Posturing Oral Reflexive
Movement

Non-Functional:
Intentional

Eye Opening with
Stimulation

0 None None None/Flaccid None None Unarousable
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global score was accounted for by the visual and
auditory items (Fig. 1) both in the MCS (Wilcoxon’s
z = −3.062, p correct = 0.01, r = 0.65 and z = −3.721, p
correct < 0.001, r = 0.79) and VS/UWS subjects’ groups
(Wilcoxon’s z = −2.874, p correct = 0.02, r = 0.77 and z
= −2.744, p correct = 0.03, r = 0.73). No significant
contributions from the motor, oromotor/verbal, com-
munication and arousal subscales to the differences in
the CRS-r global score were observed.
The measure of association in VS/UWS subjects be-

tween the CRS-r scores at the morning or afternoon as-
sessments and the risk of wrong attribution to the MCS
condition was significant (odds ratio = 4.75; 95 % confi-
dence interval: 1.73–12.7; p = 0.001; relative risk =1.4;
95 % coefficient interval: 1.15–1.7; p = 0.001). The risk
was higher in the phases B (odds ratio = 5.09; 95 % con-
fidence interval: 1.38–18.7; p = 0.014; relative risk =1.76;
95 % coefficient interval: 1.30–1.19; p = 0.014) than in
phases A (odds ratio = 1.70; 95 % confidence interval:
10.51–2.55; p = 0.5; relative risk =0.78; 95 % coefficient
interval: 2.04–1.86; p = 0.014). The risk of wrong classifi-
cation was lower in MCS group (odds ratio = 0.49; 95 %
confidence interval: 0.087–2.73; p = 0.44; relative risk =0.66;
95 % coefficient interval: 0.21–2.06; p = 0.44). The esti-
mated probability of observing during the rehabilita-
tion protocol CRS-r items compatible with MCS in
subjects diagnosed as VS/UWS was 30 % at the
morning (range: 0–55 %) and 9.5 % at the afternoon
assessments (range: 0–22 %).
These observations derive from a retrospective analysis

of the CRS-r scores obtained during a conventional re-
habilitation protocol that had not been designed to test
differences in the subjects’ responsiveness. In this

respect, the differences between the protocol phases A
and B or the possible effects of intensive treatment are
not suitable of detailed investigation or pathophysio-
logical interpretation. Prospective studies are needed for
this purpose. This caveat notwithstanding, the results
both invite speculation and suggest caution in the use of
the available clinical assessment tools. The CRS-r was
administered at the same two time windows during the
day when responsiveness had previously proved highest
in chronic VS/UWS and MCS subjects [29]. The global
score and visual and auditory subscores nevertheless
proved higher in the morning than in the afternoon,
with the mean differences in the CRS-r global score in-
creasing with time in the VS/UWS subjects’ subgroup;
the morning vs. afternoon difference was about twice
larger than the average improvement at the end of the
protocol (54.2 % vs. 28.8 %) which confirms the large
size effect estimated statistically. The variability of the
CRS-r assessment was unrelated to etiology in our pa-
tients’ sample, but a relationship with etiology cannot be
ruled out in principle.
A positive visual pursuit response (a major CRS-r

item) results of activation in the anterior and posterior
midline structures of the brain (mesiofrontal and precu-
neal cortices) [32–35], which are metabolically impaired
in the severe disorder of consciousness according to
neuroimaging studies [36, 37]. Neuroimaging has also
documented regional activation in response to stimulus
conditions in VS/UWS [12, 14, 20, 38, 39]; responses to
stimulus conditions purported to induce emotional reac-
tion have been described [40–42]. Whether any of these
responses may indicate “automatic” subcortical process-
ing atypical for the VS/UWS or it marks higher order

Fig. 1 CRS-r total and visual and auditory scores (means of 9 values at the morning and 9 at the afternoon assessments) for each VS/UWS (red) or
MCS (green) subject. Dashed: vascular; continous: traumatic; dash-line: other etiologies
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cortical activation and partially recovered consciousness,
remains an unsolved controversy [19]. Yet, the observa-
tion of responses such as these is conventionally regarded
as indicative of surviving modules of the corticocortical
and brainstem-cortex functional interaction that is
thought to sustain consciousness in the awake subject
[6, 43–48] and is interfered with in the VS/UWS and
MCS [2, 9, 10, 19, 21, 22, 36, 37, 39, 49, 50]. In this
respect, the CRS-r reliability (as also documented by
the relationship between EEG descriptors and CRS-r
scores) [51] is not to be questioned on the ground of
its variability during the day, nor is to be questioned
the examiners’ accuracy. Instead, the observed CRS-r

differences between morning and afternoon are likely
to reflect individual changes in the subject’s level of
visual, auditory and motor functioning conceivably
due to changes in the neuronal/non-neuronal factors
that modulate the brain state [52, 53]. Spontaneous
fluctuations of any of these factors may be expected
to result in random differences in responsiveness ra-
ther than in systematic difference during the day; ef-
fects of fragmentary circadian/ultradian or otherwise
cyclic processes (e.g., in metabolism) are thus also
conceivable, albeit not documentable in the absence
of multiple assessments at short intervals over the
24 h. period [22].

Fig. 2 Top: mean and SE across subjects of the CRS-r global score at the morning (red) and afternoon (blue) testing in VS/UWS and MCS. Bottom:
CRS-r global scores (mean, SE) at the morning (red) and afternoon (blue) testing in the two treatment phases A and B
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The extent to which the within-day variability in the
CRS-r global, visual and auditory scores observed in this
study may have clinical relevance in the diagnosis and
early prognosis of subjects with disorder of conscious-
ness remains to be studied in large patients’ samples.
Systematic investigation on the spontaneous variability
over time of the relevant neuronal or non-neuronal pa-
rameters in the severe disorder of consciousness is also
advisable and may help characterize these conditions in
greater detail [52]. The possible source(s) of variability
notwithstanding, the estimated risk of misclassification
for a single random CRS-r testing appears compatible
with the reported misdiagnosis between VS/UWS and
MCS [3, 4, 6, 7].

Conclusions
Multiple CRS-r assessments at different times of the day
and monitoring over time are advisable. Diagnostic criteria
taking also individual variability into a proper account
may help reduce misdiagnosis between conditions sharing
the underlying pathophysiology, but differing as to clinical
picture, prognosis, required medical care and logistics,
legal or popular perception of bioethical issues, allocated
resources, healthcare policies, etc. [1, 6, 40, 54–56]. These
considerations aside, the evidence of higher responsive-
ness in the morning compared to the afternoon invites
discussion on whether the time window dedicated to
treatment is irrelevant to rehabilitation or it should be
planned accordingly.
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